Вас просто пугает, что прямые не лежат в плоскостях граней. Но "проекции на лист бумаги" этих прямых, и - главное - точек пересечения с плоскостями граней построить совсем не сложно. Точки M и N лежат на смежных гранях, линией пересечения которых является ребро AD. Если провести DM и DN, то они где-то пересекут ребра основания. Пусть DM пересекает AC в точке Q, а DN пересекает AB в точке P. Все 5 точек D, M, Q, P, N лежат в одной плоскости, проходящей через прямые DM и DN. Значит (это ооочень тривиальное утверждение), в этой плоскости лежат и прямые PQ и NM. "Проекции этих прямых на лист бумаги" тоже (разумеется) выглядят, как прямые. То есть можно смело проводить на бумаге прямые NM и PQ до пересечения в точке R. Точка R будет отражать на чертеже реальную точку пересечения этих прямых. Важно то, что точка R принадлежит прямой PQ, которая лежит в плоскости основания, и прямой NM, которая лежит в плоскости сечения (которое и строится в задаче). Плоскости основания и плоскости сечения также принадлежит и точка K. То есть прямая RK принадлежит сечению. Она пересекает ребра AC и BC в каких-то точках (пусть это E и F). Которые тоже принадлежат сечению. Дальше все еще проще простого :). Проводится ЕМ до пересечения с AD в точке G, проводится GN до пересечения с DB в точке H, соединяются H и F. Все.
-49
Объяснение:
x²=61-12
x²= 49
x1= -7, x2= 7
-7*7= -49