Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.
Квадрат числа не может быть отрицательным, следовательно, мы имеем право умножить левую часть на знаменатель дроби в правой части, не меняя знака.
-11 ≥ (x-2)² * 3
Раскрываем по формуле сокращённого умножения
-11 ≥ (x²-4х+4)* 3
3x²-12х+23≤0
Находим корни уравнения
3x²-12х+23=0
Находим дискриминант
D=12²-4*3*23=144-276=-132
Дискриминант отрицательный, значит неравенство не имеет решений, значит, неравенство либо справедливо при любом х, либо не имеет решений.Чтобы понять, какой из этих вариантов правда, надо подставить любое значение х в неравенство, предположим, я подставлю единицу
-11/(1-2)² ≥3
-11 ≥3
Три в любом случае больше, чем любое отрицательное число. Значит уравнение не имеет решений.
Вариант решения номер два
-11 /(x-2)² ≥3
Квадрат числа не может быть отрицательным, значит в дробной части неравенства при делении получится отрицательное число. Три в любом случае больше, чем любое отрицательное число. Значит неравенство не имеет решений.