пусть первое число равно х, а второе у. Тогда 2х+у=11, а x^2+y^2=25.
Получаем систему уравнений:
2х+у=11;
x^2+y^2=25.
Выразим из первого уравнения у:
у=11-2х
и подставим полученное значение во втрое:
x^2+(11-2x)^2=25
x^2+121-44x+4x^2=25
5x^2-44x+121-25=0
5x^2-44x+96=0
Найдем дискриминант квадратного уравнения
D=b^2-4ac=1936-4*5*96=16
Так как дискриминант больше нуля то, квадратное уравнение имеет два корня:
x1=(-b+√D)/(2a)=(44+√16)/(2*5)=4.8
x2=(-b-√D)/2a=(44-√16)/(2*5)=4
В условии задачи сказано, что взяты натуральные числа, значит, нам подходит только х=4
Найдем у:
у=11-2х
у=11-2*4
у=3
ответ: взяты числа 4 и 3
Дано:
S₁ – расстояние от села Вишневое до станции
S₂ = S₁ + 14 км – расстояние от села Яблоневое до станции
t₁ = 45 мин = 3/4 ч – время, за которое автобус доезжает от села Вишневое до станции
t₂ = t₁ + 5 мин = t₁ + 1/12 ч – время, за которое автомобиль доезжает от села Яблоневое до станции
V₁ – скорость автобуса
V₂ = V₁ + 12 км/ч – скорость автомобиля
Найти: V₁, V₂
Составим систему уравнений:
{ S₁ = V₁·t₁
{ S₂ = V₂·t₂
Вычтем первое уравнение из второго:
S₂ – S₁ = V₂·t₂ – V₁·t₁
Подставим соотношения из условия задачи:
S₁ + 14 – S₁ = (V₁ + 12)(t₁ + 1/12) – V₁·t₁
14 = V₁ / 12 + 12t₁ + 1
Подставим t₁ = 3/4 ч:
14 = V₁ / 12 + 12·3/4 + 1
14 = V₁ / 12 + 10
V₁ / 12 = 4
V₁ = 48 км/ч – скорость автобуса
Из условия задачи:
V₂ = V₁ + 12 = 48 + 12 = 60 км/ч – скорость автомобиля
ответ: скорость автобуса 48 км/ч, скорость автомобиля 60 км/ч.