Моторний човен за 4 год руху за течією річки проходить на 71 км більше , ніж за 1,5 год руху проти течії. Знайдіть власну швидкість човна та швидкість течії річки, якщо за 5 год руху озером він проходить на 10 км менше ніж за 5 год за течією річки.
Заметим, что 10...0 (в числе четное число нулей) дает остаток 1 при делении на 11: например, 1000000 = 1 + 99 99 99, разность между такой степенью десятки и 1 разбивается на группы 99-ок и поэтому делится на 99 (и, соответственно, на 11).
Если в числе 10...0 нечетное число нулей, то оно будет давать остаток 10 при делении на 11: например, 10000000 = 10 + 99 99 99 0, так же и в любой другой степени, разность между числом и 10 будет содержать какое-то количество групп 99-ок и 0, разность делится на 11.
Осталось расписать число в виде суммы разрядных слагаемых:
и заметить, что эта сумма даёт такой же остаток при делении на 11, что и
В первой скобке стоит разность сумм цифр, стоящих на четных и на нечетных местах, второе слагаемое - делится на 11. Чтобы вся сумма делилась на 11, необходимо и достаточно, чтобы разность сумм цифр, стоящих на четных и на нечетных местах, делилась на 11.
Признак делимости на 13:
Число равно 10A + b, A - число, образованное всеми цифрами кроме последней, b - последняя цифра. Утверждается, что если сложить число десятков A с учетверенным числом единиц 4b, то полученная сумма A + 4b делится на 13 тогда же, когда и исходное число. Это следует из того, что (10A + b) + 3(A + 4b) = 13(A + b); если одно слагаемое делится на 13, то и второе обязано делиться на 13, так как вся сумма делится на 13.
Допустим, мы вынимаем по одной перчатке из левого и правого ящика, пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые. В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых. Остались в левом белые, а в правом белые и черные. Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые, и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую. В самом плохом случае мы вынем все 8 белых и только 9-ую черную. Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных, 9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку. Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.
Признак делимости на 11:
Заметим, что 10...0 (в числе четное число нулей) дает остаток 1 при делении на 11: например, 1000000 = 1 + 99 99 99, разность между такой степенью десятки и 1 разбивается на группы 99-ок и поэтому делится на 99 (и, соответственно, на 11).
Если в числе 10...0 нечетное число нулей, то оно будет давать остаток 10 при делении на 11: например, 10000000 = 10 + 99 99 99 0, так же и в любой другой степени, разность между числом и 10 будет содержать какое-то количество групп 99-ок и 0, разность делится на 11.
Осталось расписать число в виде суммы разрядных слагаемых:
и заметить, что эта сумма даёт такой же остаток при делении на 11, что и
В первой скобке стоит разность сумм цифр, стоящих на четных и на нечетных местах, второе слагаемое - делится на 11. Чтобы вся сумма делилась на 11, необходимо и достаточно, чтобы разность сумм цифр, стоящих на четных и на нечетных местах, делилась на 11.
Признак делимости на 13:
Число равно 10A + b, A - число, образованное всеми цифрами кроме последней, b - последняя цифра. Утверждается, что если сложить число десятков A с учетверенным числом единиц 4b, то полученная сумма A + 4b делится на 13 тогда же, когда и исходное число. Это следует из того, что (10A + b) + 3(A + 4b) = 13(A + b); если одно слагаемое делится на 13, то и второе обязано делиться на 13, так как вся сумма делится на 13.