Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
пусть пешеход, вышедший из А, после встречи км. Тогда его скорость v1=S/t =
= 3x/2 км/час (40 мин = 2/3 час).
Пешеходу, вышедшему из В, после встречи пришлось пройти x + 2 км. Тогда его скорость
v2=S/t = 2(x+2)/3 км/час (1 час 30 мин = 3/2 час).
До встречи первый затратил время t = (x+2)/v1 = 2 * (x+2)/(3x).
До встречи второй затратил время t = x/v2 = 3 * x/(2(x+2)). Времена затраченные до встречи равны. Составляем уравнение.
(2x + 4)/3x = 3x/(2x+4)
(2x + 4)² = 9x²
либо 2x + 4 = 3x. x=4, либо
2x + 4 = -3x. x=-4/5 (не имеет смысла).
Искомое расстояние S = x + x + 2 = 4 + 4 + 2 = 10 км