Приклад:
Розв'язати систему рівнянь: {x−2y=3,5x+y=4.
1) З першого рівняння системи виражаємо змінну x через змінну y.
Отримуємо: x−2y=3,x=3+2y;
2) Підставимо отриманий вираз замість змінної x у друге рівняння системи:
5⋅x+y=4,5⋅(3+2y)+y=4;
3) Розв'яжемо утворене рівняння з однією змінною, знайдемо y:
5⋅(3+2y)+y=4,15+10y+y=4,10y+y=4−15,11y=−11,|:11y=−1¯¯¯¯¯¯¯¯¯¯¯.
4) Знайдемо відповідне значення змінної x, підставивши значення змінної y, у вираз знайдений на першому кроці:
x=3+2⋅y,x=3+2⋅(−1),x=3−2,x=1¯¯¯¯¯¯¯¯.
5) Відповідь: (1;−1) .
Объяснение:
это решить линейные уравнения без черчежей
Во втором случае не пересекаются, т.к. левая часть не равна правой.
Графиками являются прямые: в первом случае проходит через точку -4, находится в 1 и 3 четверти (k>0); во втором случае проходит через 2 и находится во 2 и 4 четверти (k<0).
3. Формула линейной функции имеет вид: y=5.
4. Т.к. они параллельны, то угловые коэффициенты равны (k=1.5). Искомая прямая проходит через А. Подставляем значения в формулу y=1.5x+c. Ищем с, который равен -2.5. Получаем, что y=1.5x-2.5. Графиком является прямая, проходящая через точку -2.5.
5. Т.к. прямые параллельны, то угловой коэффициент одинаков, то есть равен -0.4 (k= -0.4). Получаем, что y= -0.4x + 1.
Для проверки принадлежности точки, необходимо доказать верность тождества:
-19= -0.4*50+1
-19= -20+1
-19= -19, т.к. левая часть равна правой, то тождество оказалось верным, следовательно точка С(50; -19) принадлежит графику функции y= -0.4x+1.