если х - количество дней работы, то можно составить уравнение: (54+6)(х-1)=54*х+18 (54+6) - птому, что в день изготавливали на 6 деталей больше нормы (х-1) - потому, что они за день день до срока изготовили боьше нормы 54*х - сколько должны были изготовить при нормальной работе в срок +18 - т.к. изготовили на 18 деталей больше необходимого
получаем уравнение 54х-54+6х-6=54х+18 отсюда: 6х=18+54+6 отсюда х=13 ( т.к. они выполнили план за 1 день до срока, то кол-во дней равно х-1=12)
Также можно число х, принять кол-во дней, за которые рабочие управились, тогда уравнение будет иметь вид: (54+6)*х=54*(х+1)+18 решается аналогично
Определение: Квадратным уравнением называется уравнение вида ax²+bx+c,где x - переменная, a, b, c - постоянные (числовые) коэффициенты.
В общем случае решение квадратных уравнений сводится к нахождению дискриминанта (математики ввели себе такой термин для упрощения решения квадратных уравнений). По мимо этого, корни можно найти по теореме Виета, но вот доказать, имеет ли уравнение корни или нет по ней, к сожалению, нельзя.
Формула дискриминанта: D=b²-4ac, откуда a,b, с - это коэффициенты из уравнения.
Если D>0 (положительный), то уравнение имеет два корня. Если D=0, то один корень. Если D<0 (отрицательный), то уравнение корней не имеет.
Поэтому всё задание сводится к нахождению дискриминанта:
x²-10x+27=0
a=1 (если возле переменной не стоит никакое число (например, 2, 3, -10 и т.д.), то подразумевается, что там спряталась единица) b=-10 c=27
Подставим эти коэффициенты в формулу дискриминанта. D=(-10)²-4×27×1=100-108=-8 (число -8 отрицательное, поэтому уравнение корней не имеет)
x²+x+1=0 a=1, b=1, c=1 D=b²-4ac=1²-4×1×1=1-4=-3 (-3 отрицательное число, поэтому уравнение корней не имеет)
(54+6)(х-1)=54*х+18
(54+6) - птому, что в день изготавливали на 6 деталей больше нормы
(х-1) - потому, что они за день день до срока изготовили боьше нормы
54*х - сколько должны были изготовить при нормальной работе в срок
+18 - т.к. изготовили на 18 деталей больше необходимого
получаем уравнение 54х-54+6х-6=54х+18
отсюда: 6х=18+54+6 отсюда х=13 ( т.к. они выполнили план за 1 день до срока, то кол-во дней равно х-1=12)
Также можно число х, принять кол-во дней, за которые рабочие управились, тогда уравнение будет иметь вид:
(54+6)*х=54*(х+1)+18 решается аналогично