М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
akimovilya20
akimovilya20
21.03.2020 05:14 •  Алгебра

при якому значенні змінної немає змісту вираз ікс мінус дев'ять поділити на ікс плюс двадцять

👇
Открыть все ответы
Ответ:
saitovdamir20Damit
saitovdamir20Damit
21.03.2020

Условие

x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx.

Решение 1

Докажем неравенство индукцией по n.

База. При n = 1 неравенство превращается в равенство.

Шаг индукции. Пусть уже доказано, что (1 + x)n ≥ 1 + nx. Тогда (1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + nx + x + nx² ≥ 1 + (n + 1)x.

Решение 2

Пусть a > 1. Рассмотрим функцию f(x) = (1 + x)a – ax – 1, определенную при x > –1. Ее производная f'(x) = a(1 + x)a–1 – a = a((1 + x)a–1 – 1) положительна при x > 0 и отрицательна при –1 < x < 0. Следовательно, f(x) ≥ f(0) = 0 на всей области определения.

Замечания

1. Неравенство превращается в равенство не только при n = 1, но и при x = 0 . В остальных случаях оно строгое.

2. При x ≥ 0 (такое ограничение дано в источнике) неравенство Бернулли сразу следует из формулы бинома: (1 + x)n = 1 + nx + ... .

3. Из решения 2 видно, что неравенство верно и при нецелых n > 1.

4,6(70 оценок)
Ответ:
милка326
милка326
21.03.2020

Условие

x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx.

Решение 1

Докажем неравенство индукцией по n.

База. При n = 1 неравенство превращается в равенство.

Шаг индукции. Пусть уже доказано, что (1 + x)n ≥ 1 + nx. Тогда (1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + nx + x + nx² ≥ 1 + (n + 1)x.

Решение 2

Пусть a > 1. Рассмотрим функцию f(x) = (1 + x)a – ax – 1, определенную при x > –1. Ее производная f'(x) = a(1 + x)a–1 – a = a((1 + x)a–1 – 1) положительна при x > 0 и отрицательна при –1 < x < 0. Следовательно, f(x) ≥ f(0) = 0 на всей области определения.

Замечания

1. Неравенство превращается в равенство не только при n = 1, но и при x = 0 . В остальных случаях оно строгое.

2. При x ≥ 0 (такое ограничение дано в источнике) неравенство Бернулли сразу следует из формулы бинома: (1 + x)n = 1 + nx + ... .

3. Из решения 2 видно, что неравенство верно и при нецелых n > 1.

4,5(21 оценок)
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ