ответ: нет решения
Объяснение: Размещением из n элементов по х называется любое упорядоченное подмножество из х элементов множества, состоящего из n различных элементов. Число размещений без повторений определяется по формуле
Aₙˣ= n!/(n-x)! Значит A²ₙ= n!/(n-2)!
Eсли комбинации из n элементов по x отличаются только составом элементов, то такие неупорядоченные комбинации называют сочетаниями из n элементов по x. Число сочетаний без повторений из n элементов по x определяется по формуле:
Cₙˣ= n!/ x!(n-x)! значит Сₙ²= n!/ 2!(n-2)!
Поэтому Сₙ² : Аₙ²= n!/ 2!(n-2)! : n!/(n-2)! = 1/2! = 1/2, т.к. 2!= 1·2=2
1/2 ≠ 32, значит уравнение не имеет решения
1/6
Объяснение:
Вероятность Р=m/n, где n- общее число элементарных исходов, m - число благоприятных элементарных исходов.
При бросании игрального кубика равновероятно наступление следующих шести исходов: - выпадение "1", выпадение "2", выпадение "3", выпадение "4", выпадение "5", выпадение "6". Значит, n=6
Из них только "5" делится без остатка на 5. Значит, m=1
Следовательно, вероятность того, что количество выпавших очков на верхней грани кубика будет числом, которое делится на 5 равна
Р = 1/6.
в)
Нет корней
г)
Утверждение верно только если