Ть опервый использование свойств арифметической прогрессии) Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным ответ: 114
второй на смекалку) (так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х= (-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х= 0+0+0+....+0+0+112+113+114+..+х =112+113+..+х т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0, и фактически наша сумма равна 112+113+...+х (*) так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы , найдем его очень быстро 112=112 112+113=225 - меньше 112+113+114=339 -- совпало значит искомое число х равно 114 ответ: 114
Выражение: 2/2-x-0.5=4/x*(2-x)
ответ: 4.5-x-8/x=0
Решаем по действиям:
1) 2/2=1
2.0|2_ _
2_ |1
0
2) 1-0.5=0.5
-1.0
_0_._5_
0.5
3) 4*(2-x)=8-4*x
4*(2-x)=4*2-4*x
3.1) 4*2=8
X4
_2_
8
4) (8-4*x)/x=8/x-4*x/x
5) x/x=1
6) 0.5-x-(8/x-4)=0.5-x-8/x+4
7) 0.5+4=4.5
+0.5
_4_._0_
4.5
Решаем по шагам:
1) 1-x-0.5-4/x*(2-x)=0
1.1) 2/2=1
2.0|2_ _
2_ |1
0
2) 0.5-x-4/x*(2-x)=0
2.1) 1-0.5=0.5
-1.0
_0_._5_
0.5
3) 0.5-x-(8-4*x)/x=0
3.1) 4*(2-x)=8-4*x
4*(2-x)=4*2-4*x
3.1.1) 4*2=8
X4
_2_
8
4) 0.5-x-(8/x-4*x/x)=0
4.1) (8-4*x)/x=8/x-4*x/x
5) 0.5-x-(8/x-4)=0
5.1) x/x=1
6) 0.5-x-8/x+4=0
6.1) 0.5-x-(8/x-4)=0.5-x-8/x+4
7) 4.5-x-8/x=0
7.1) 0.5+4=4.5
+0.5
_4_._0_
4.5