Пусть x рублей стоит пирожок, а y рублей - булка. Зная, что на 40 рублей можно купить три пирожка и две булки, составим первое уравнение системы: 3x+2y=40. Также, по условию задачи известно, что на 45 рублей можно приобрести два пирожка и три булки; составим второе уравнение системы: 2x+3y=45. Составим и решим систему уравнений:
6x+4y-6x69y=80-135
5y=55
y=11
ответ: 11 рублей стоит булка; 6 рублей стоит пирожок.
Пусть x - число девочек в классе, а y - мальчков. Зная, что всего в классе 24 ученика, составим первое уравнение: x+y=24. По условию задачи, чтобы девочкам выдать по три тетради,а мальчикам по две тетради,потребуется 59 тетрадей. Составим второе уравнение: 3x+2y=59. Составим систему уравнений:
3x+2y-2x-2y=59-48
x=11
ответ: в классе 11 девочек, 13 мальчиков.
Подробнее - на -
5х + 9 = 4х².
Получаем квадратное уравнение.
4х² - 5х - 9 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-5)^2-4*4*(-9)=25-4*4*(-9)=25-16*(-9)=25-(-16*9)=25-(-144)=25+144=169;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√169-(-5))/(2*4)=(13-(-5))/(2*4)=(13+5)/(2*4)=18/(2*4)=18/8=2.25;
x_2=(-√169-(-5))/(2*4)=(-13-(-5))/(2*4)=(-13+5)/(2*4)=-8/(2*4)=-8/8=-1.
Второй (отрицательный) корень отбрасываем - в задании даётся положительное значение корня.
ответ: х = 18/8 = 9/4 = 2,25.
2)(1/7)степень7-x =49.
Выражение (1/7)^(7-x) равносильно 7^(x-7) по свойству (1/а) = а^(-1).
Тогда 7^(x-7) = 7².
Отсюда х - 7 = 2
х = 2 + 7 = 9.
ответ: х = 9.
3)lоg внизу5 ×(7-x)=2
Логарифм - это показатель степени основания.
То есть 5² = 7 - х
Отсюда х = 7 - 25 = -18.
ответ: х = -18.