Решите уравнение:
(2x²−3x)²+ 7*(2x²−3x) −1 8=0
решение : замена t =2x²−3x
t² + 7t - 18 = 0 (квадратное уравнение D=7² - 4*1*(-18) =11 ², t =(-9±11)/2, но ...) ⇔ t² - 2t +9t - 18 =0 ⇔ t (t - 2)+ 9(t -2) =(t -2)(t+9) =0 ⇒ t = - 9 или t =2.
a) 2x²−3x = -9 ⇔2x²− 3x+ 9 =0 ; D =(-3)² - 4*2*9 = -63 < 0 ⇒нет решений
б) 2x²−3x =2 ⇔ 2x²−3x -2 =0 }} D =(-3)² -4*2*(-2) =5² ⇔ x =(3 ±5) 4 .
* * * По т. Виета 2x²−3x -2 =0 ⇔ x²−(3/2)x -1=0 ⇔ x²−(2 -1/2)*x +2 *(-1/2) =0 * * *
x₁ = -1/2 ; x₂ =(3+5)/5 =2.
ответ : - 1/2 ; 2 .
Дробь равна нулю, если числитель равен нулю, а знаменатель отличен от нуля. Для решения такого уравнения необходимо либо решить систему (числитель равен нулю, знаменатель отличен от нуля), либо найти нули числители и выбрать из них те, при которых знаменатель не равен нулю.
2x^2 + 3x + 1 = 0;
D = 9 - 8 = 1;
x = (-3±1)/4
x = -1 ИЛИ x = -1/2.
Подставим полученные значения в знаменатель.
x = -1: -1 + 2 -3 +2 = 0 - не корень исходного уравнения.
x = -1/2: -1/8 + 1/2 - 3/2 + 2 ≠ 0 - корень исходного уравнения.
ответ: -1/2.
ропорциональности. Приводим примеры, когда прямая пропорциональность встречается в повседневной жизни. Также на этом уроке мы строим график прямой пропорциональности и выясняем, от чего зависит расположение графика в координатной плоскости.
Конспект урока "Прямая пропорциональность и её график"
Вопросы занятия:
· ввести понятие «прямая пропорциональность»;
· привести примеры, когда прямая пропорциональность встречается в повседневной жизни;
· построить график прямой пропорциональности;
· определить от чего зависит расположение графика в координатной плоскости.
Материал урока
Давайте рассмотрим пример.
Пример.
Обратите внимание, что если переменную t увеличить, например, в 2 раза, то и переменная H также увеличится в 2 раза. То есть:
Также заметим, что зависимость высоты растения от времени его роста мы задали формулой вида:
В рассматриваемом примере: k = 2,5, а переменная t является независимой.
Сформулируем определение.
Определение.
С прямой пропорциональностью мы с вами часто встречаемся в повседневной жизни.
Например,
Или,
Теперь давайте построим график прямой пропорциональности:
Видим, что все точки лежат на одной прямой, которая проходит через начало координат. Для убедительности можем даже приложить линейку.
Таким образом, можем сформулировать определение.
Определение.
Графиком прямой пропорциональности y = kx является прямая, проходящая через начало координат.
Нам известно, что прямая определяется двумя точками. А значит, для построения графика функции y = kx достаточно указать любую точку графика этой функции, которая отличается от точки с координатами: (0, 0), то есть от начала координат.
Например,
А теперь посмотрите на рисунок, на котором изображены графики прямой пропорциональности.
Обратите внимание, что графики тех функций, которые имеют положительный коэффициент k расположены в первой и третьей координатных четвертях, а которые имеют отрицательный коэффициент k – во второй и четвёртой четвертях. То есть расположение графика функции y = kx в координатной плоскости зависит от коэффициента k.