11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
Рассмотрим элементы по отдельности. Можно заметить, что они являются членами геометрической прогрессии, где каждый элемент больше последующего в 7 раз. Следовательно, это есть сумма геометрической прогрессии с элементов.
.
Получили, что нужно доказать кратность выражения .
.
Докажем кратность методом математической индукции (2 этапа): 1. Этап проверки: проверяется, истинно ли предложение (утверждение) P(1). 2. Этап доказательства: предполагается, что предложение P(n) истинно, и доказывается истинность предложения P(n + 1) (n увеличено на единицу).
Рассмотрим 1ый шаг при : Доказано при выполняется.
Рассмотрим 2ой шаг при . Что и требовалось доказать.
3а*3 с*2+6а*2 с*3-9а*3 с*3=18ac+12ac-81ac=3(6ac+4ac-27ac)=3ac(6+4-27)