Эврика! это решение для тех, кто проходил уравнение с пропорцией. суммарно производительность двух насосов после ремонта стала 2,8 единиц. заполненный бассейн примем как выполненная на 100% работа. первый насос после ремонта стал выдавать 1,2 единиц производительности, значит можно узнать, какой процент от всей работы он выполнял. пропорция: 2,8=100%, 1,2=х% переведем все цифры в неправильные дроби и оставим их такими до конечного результата (так не будет бесконечных десятичных дробей) и получим : 28/10=100%, 12/10=х%, отсюда х%=120: 28/10=300/7 если первый насос за 6 часов выполнил 300/7% от всей работы, то за сколько времени он выполнит 100% работы? переведем часы в минуты, так как легче минуты сложить в часы, чем высчитывать их по дробям. 6 часов=360 минут снова уравнение с пропорцией: 360 мин=300/7%, х мин=100%, отсюда х (мин)=36000(мин) : 300/7(%)=252000/300=840(мин) теперь полученные минуты переводим в часы: 840: 60=14(часов) ответ: первый насос после ремонта заполнит бассейн самостоятельно за 14 часов.
Тангенс угла наклона касательной равен производной в точке касания к графику функции.
tgα = y'(x).
1) y = 0,2x^2 + 2x - 4, A(2; 0,8).
Проверяем - принадлежит ли точка данной функции.
0,2*2² + 2*2 - 4 = 0,8. Да, принадлежит.
Находим производную: y' = 0,2*2x + 2.
y'(2) = 0,2*2*2 + 2 = 2,8.
ответ: tgα = 2,8.
2) y = -3x^2 - x + 5, А(-2; -5).
Аналогично проверяем - точка А на кривой (парабола).
y' = -6x - 1,
y'(-2) = -6*(-2) - 1 = 12 - 1 = 11.
ответ: tgα = 11.
3) y = (x^2 - 1)/(x - 5), A(3; 3 2/3). (Ели так дано задание)
В этой задаче сложное решение, так как точка А не лежит на кривой.
Производная : y' = (2x(x - 5) - 1*(x^2 - 1))/(x - 5)^2) = (x^2 - 10x + 1)/((x - 5)^2).
Производная в точке касания хо: (xо^2 - 10xо + 1)/((xо- 5)^2).
Получим уравнение касательной проходящей через точку A(3;3 2/3):
3 2/3 = ((xо^2 - 10xо + 1)/((xо- 5)^2))(3 - хо) + ((xо^2 - 1)/(xо - 5)).
Решение затруднено, так функция - кубическая.
Ориентировочно решение найдено графически в программе ГеоГебра: у = -18,76х + 59,95.
График приведен во вложении.