Я уже решал эту задачу. Они выехали в момент 14-t, то есть за t ч до 14, и встретились в 14. Скорость велосипеда была v, скорость мотоцикла w км/ч. При движении навстречу скорости складываются. Расстояние AB=S. Значит, время в пути S = t*(v+w) Если бы скорость вела была 2v, то они встретились бы в 13 ч 30 мин, то есть на 0,5 ч раньше. S = (t-0,5)(2v+w) Если бы скорость мото была 2w, то они встретились бы в 13 ч 12 мин, то есть на 48 мин=0,8 ч раньше S = (t-0,8)(2w+v) Получаем систему { S = tv + tw { S = 2tv + tw - v - 0,5w { S = 2tw + tv - 1,6w - 0,8v Из 2 ур-ния вычитаем 1 ур-ние. Из 3 ур-ния тоже вычитаем 1 ур-ние. { 0 = tv - v - 0,5w { 0 = tw - 1,6w - 0,8v Решаем { w = 2v*(t-1) { 0,8v = w(t-1,6) = 2v(t-1)(t-1,6) Делим всё на 2v и умножаем на 5 2 = 5(t^2-2,6t+1,6) 5t^2 - 13t + 6 = 0 D = 13^2 - 4*5*6 = 169 - 120 = 49 t1 = (13-7)/10 = 6/10 = 0,6 ч = 36 мин. t2 = (13+7)/10 = 20/10 = 2 ч. Если t1, то они выехали в 14 ч - 36 мин = 13 ч 24 мин. Но это позже, чем 13 ч 12 мин, поэтому не подходит. ответ: они выехали в 14 - 2 = 12 часов.
В решении.
Объяснение:
Разложить квадратный трёхчлен на множители:
1) а² - 12а + 24 = 0
Приравнять к нулю и решить как квадратное уравнение.
D=b²-4ac =144 - 96 = 48 √D=48 = √16*3 = 4√3;
а₁=(-b-√D)/2a
а₁=(12-4√3)/2
а₁=6 - 2√3;
а₂=(-b+√D)/2a
а₂=(12+4√3)/2
а₂=6 + 2√3.
Разложение:
а² - 12а + 24 = (а - (6 - 2√3))(а - (6 + 2√3)) = (а - 6 + 2√3)*(а - 6 - 2√3).
2) -b² + 16b - 15 = 0
Приравнять к нулю и решить как квадратное уравнение.
-b² + 16b - 15 = 0/-1
b² - 16b + 15 = 0
D=b²-4ac =256 - 60 = 196 √D=14
b₁=(-b-√D)/2a
b₁=(16-14)/2
b₁=2/2
b₁=1;
b₂=(-b+√D)/2a
b₂=(16+14)/2
b₂=30/2
b₂=15.
Разложение:
-b² + 16b - 15 = -(b - 1)(b - 15).
3) -z² - 8z + 9 = 0
Приравнять к нулю и решить как квадратное уравнение.
-z² - 8z + 9 = 0/-1
z² + 8z - 9 = 0
D=b²-4ac =64 + 36 = 100 √D=10
z₁=(-b-√D)/2a
z₁=(-8-10)/2
z₁= -18/2
z₁= -9;
z₂=(-b+√D)/2a
z₂=(-8+10)/2
z₂=2/2
z₂=1.
Разложение:
-z² - 8z + 9 = -(z + 9)*(z - 1).