Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
Задание 2:
{2x+7y=38|*3 {6x+21y=114
{6x-4y=-11 {6x-4y=-11
Вычтем из первого уравнения второе:
21y-(-4y)=114-(-11)
25y=125
y=5
Подставим полученное значение во второе уравнение:
6x-4*5=-11
6x-20=-11
6x=9
x=1,5
ответ:(1,5;5)
Задание 3:
y=kx+b
Составим систему уравнений, подставив в формулу прямой соответствующие значения абцисс и ординат точек:
{k+b=-2,5
{-2k+b=12,5
Вычтем из первого уравнения второе:
k-(-2k)=-2,5-12,5
3k=-15
k=-5
Подставим полученное значение в первое уравнение:
-5+b=-2,5
b=2,5
Итоговая формула:
y=-5x+2,5
Вроде так...........