а). 16а³/5b•35b²/12a⁴= 16a³•35b²/5b•12a⁴=8•7b/6a=4•7b/3a
б). (7m-3)•m³/35m-15= (7m-3)•m³/5(7m-3)=m³/5
в). 6cd/c²-4c•c²-16/18d²=6cd•(c-4)(c+4)/c(c-4)•18d²= 6d(c+4)/18d²= c+4/3d
г). (-5х²/у³)²= 25x⁴/y6
Объяснение:
a). сначала умножаем числитель на числитель и знаменатель на знаменатель; потом упрощаем
б). умножаем разность на числитель (т.к. у этой разности знаменатель 1 и его просто не пишут), в знаменателе можно вынести 5, сокращаем все.
в). в 1 знаменателе можно вынести с, а во втором числители формула
г). степень после скобок относится ко всей дроби, так что возводим в степень 2 и числитель и знаменатель(- при этом уйдет, т.к. степень четная)
Объяснение:
В ромбе диагонали точкой пересечения делятся пополам и взаимно перпендикулярны. Если в ромбе провести диагонали, то они разобьют ромб на 4 равных прямоугольных треугольника.
Тогда рассмотрим один из таких треугольников.
В нем известна сторона ромба- это будет гипотенуза для ∆, и один из катетов, это половина первой диагонали ромба, второй катет не известен, но он половина второй диагонали ромба.
По теореме Пифагора:
10²=(16/2) ²+х²
100=64²+х²
Х²=100-64=36; х=6 см, тогда вторая диагональ равна 6*2=12 см.
S=0,5*d1*d2=0,5*16*12=96 см²
ответь на рисунке ....