М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Кологривко
Кологривко
12.08.2020 20:05 •  Алгебра

Чему равна сумма корней уравнения х2 +16х + 15 = 0?

👇
Ответ:
rmaro82
rmaro82
12.08.2020

-16

Объяснение:

по теореме Виета получим;

x1+x2=-16

4,7(99 оценок)
Открыть все ответы
Ответ:
GolduckChannel
GolduckChannel
12.08.2020

Двузначное число, где а десятков и b единиц представим в виде 10a+b (это разложение числа по разрядам). Далее записываем условие задачи: 1) первое предложение

(10a+b):(a+b)=7(ост.3)    

10a+b=7(a+b)+3  

10a+b=7a+7b+3  

3a-6b=3

a-2b=1   - это первое уравнение системы.  

2) читаем второе предложение задачи

При перестановке цифр данного двузначного числа получим число 10b+a. Известно, что оно на 36 меньше, чем число 10a+b. Запишем это: 10a+b-36=10b+a

9a-9b=36  |:9

a-b=4 - это второе уравнение системы

Решаем систему:

\left \{ {{a-2b=1} \atop {a-b=4}} \right. =\left \{ {{a-2b=1} \atop {a=b+4}} \right. =\left \{ {{b+4-2b=1} \atop {a=b+4}} \right. =\left \{ {{-b=-3} \atop {a=b+4}} \right. =\left \{ {{b=3} \atop {a=3+4}} \right. \\=\left \{ {{b=3} \atop {a=7}} \right.

Итак, искомое двузначное число равно 73.

4,4(15 оценок)
Ответ:
deemetraa
deemetraa
12.08.2020
Обозначим искомое число как n^3, по условию n^3=13p+1. Перенесём единицу в левую часть и разложим разность кубов на множители:
(n-1)(n^2+n+1)=13p

Понятно, что n2, тогда обе скобки-сомножителя - натуральные числа, большие 1. С другой стороны, произведение 13p представляется в виде двух натуральных сомножителей, больших единицы, единственным (с точностью до перестановок 13p=13\cdot p. Поэтому n-1, n^2+n+1 равны либо 13 и p, либо p и 13.

Случай 1. \begin{cases}n-1=13\\n^2+n+1=p\end{cases}
Из первого уравнения следует, что n=14, тогда после подстановки во второе уравнение находим p=14^2+14+1=211. 211 - действительно простое число, так что n=14 нас устраивает.

Случай 2. \begin{cases}n-1=p\\n^2+n+1=13\end{cases}
Тут всё немного сложнее: уравнение на n квадратное, а не линейное, как в первом случае. Упростив, получаем уравнение n^2+n-12=0, у которого только один натуральный корень n=3.
Подставляем в первое равенство: p=3-1=2 - простое число, так что и тут нас всё устраивает.

ответ. 14^3=2744, 3^3=27
4,4(74 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ