М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kravchenjatkop00zs0
kravchenjatkop00zs0
07.05.2021 01:25 •  Алгебра

При якому значення с графік рівняння проходить черезпочаток координат 3х+4у=с+2

👇
Ответ:
vovan2002vovap0181f
vovan2002vovap0181f
07.05.2021

Начало координат - это точка (0;0), поэтому подставляя ее в уравнение прямой, получим        с+2=0, откуда с=-2

ответ  с=-2

4,4(35 оценок)
Открыть все ответы
Ответ:
hmrl123
hmrl123
07.05.2021
Подходят такие пары целых чисел: (0; 0); (0; 1); (0; 2); (0; 3); (0; 4); (0; 5); (0; 6); (0; 7); (0; 8) - 9 пар. (1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (1; 7) - 7 пар. (2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (2; 7) - 6 пар. (3; 3); (3; 4); (3; 5); (3; 6); (3; 7) - 5 пар. (4; 4); (4; 5); (4; 6) - 3 пары (5; 5); (5; 6) - 2 пары всё. всего 9 + 7 + 6 + 5 + 3 + 2 = 32 пары. из них сумму меньше 8 имеют 20 пар. вероятность равна 20/32 = 5/8
4,7(92 оценок)
Ответ:
iten228
iten228
07.05.2021

x= - 11 точка локального минимума функции

Объяснение:

Дана функция

\tt \displaystyle y=(x+11)^2 \cdot e^{3-x}

1) Вычислим производную от функции:

\tt \displaystyle y'=((x+11)^2 \cdot e^{3-x})'=(x+11)^2 )'\cdot e^{3-x}+(x+11)^2 \cdot( e^{3-x})' =

\tt \displaystyle =2 \cdot (x+11) \cdot e^{3-x}+(x+11)^2 \cdot (-1) \cdot e^{3-x} =

\tt \displaystyle =e^{3-x} \cdot (2 \cdot (x+11)-(x+11)^2) =-e^{3-x} \cdot (x^2+20\cdot x+99).

2) Находим критические точки:

\tt \displaystyle y'=0 \Leftrightarrow -e^{3-x} \cdot (x^2+20\cdot x+99)=0 \Leftrightarrow x^2+20\cdot x+99=0:

\tt \displaystyle D=20^2-4 \cdot 1 \cdot 99= 400-396=4=2^2

\tt \displaystyle x_{1}=\frac{-20-2}{2}=-11\\\\ x_{2}=\frac{-20+2}{2}=-9.

3) Определим промежутки возрастания и убывания функции. Для этого представим производную от функции в следующем виде и применим метод интервалов:

\tt \displaystyle y'=-e^{3-x} \cdot (x+11) \cdot (x+9).

Точки -11 и -9 делят ось Ох на 3 интервала: (-∞; -11), (-11; -9) и (-9; +∞).

а) Пусть x= -12∈(-∞; -11):

\tt \displaystyle y'(-12)=-e^{3-(-12)} \cdot (-12+11) \cdot (-12+9)=-e^{15} \cdot (-1) \cdot (-3)=-3\cdot e^{15}

Значит, на интервале (-∞; -11) функция убывает.

б) Пусть x= -10∈(-11; -9):

\tt \displaystyle y'(-10)=-e^{3-(-10)} \cdot (-10+11) \cdot (-10+9)=-e^{13} \cdot 1 \cdot (-1)=e^{13} 0

Значит, на интервале (-11; -9) функция возрастает.

в) Пусть x= 0∈(-9; +∞):

\tt \displaystyle y'(0)=-e^{3-0} \cdot (0+11) \cdot (0+9)=-e^{15} \cdot 11 \cdot 9=-99\cdot e^{3}

Значит, на интервале (-9; +∞) функция убывает.

4) Определим экстремумы функции:

Функция убывает на интервале (-∞; -11) и возрастает на интервале (-11; -9), то x= - 11 точка локального минимума функции.

Функция возрастает на интервале (-11; -9) и убывает  на интервале (-9; +∞), то x= - 9 точка локального максимума функции.

4,8(20 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ