привет,если что то не пон или не прав. пиши мне а если тебе понравился мой ответ и он тебе то отметь его как лучший и постав лайк Объяснение:
1. Обозначим кол-во в Первом ящике - х
во Втором ящике - у
Теперь составим уравнения, в зависимости из условий
х-45 = у+45
(х+20) = 3*(у-20)
Из первого выразим х и подставим во второе уравнение
х = у+90
(у+90+20) = 3*(у-20)
у+110 = 3у-60
2у = 170
у = 85 ябл - во втором ящике.
Теперь подставим у в уравнение с х и найдем х
х = у+90
х = 85+90 = 175 ябл - в первом ящике.
ответ : в первом ящике 175 яблок, а во втором - 85 яблок.
Объяснение:
1) синусы и косинусы углов, вместе образующих 90 градусов равны. То есть тут можно утверждение заменить на cos5*tg5.
По тригонометрическим тождествам знаем, что тангенс=Sin/cos=> sin5*cos5/cos5= sin 5
2) синусы и косинусы углов, вместе образующих 90 градусов равны, значит тангенсы их-обратные числа( например tg5=sin5/cos5, tg85=sin85/cos85= cos5/sin5, тогда tg85*tg5= sin5*cos5/cos5*sin5=1)
Всего тут две такие пары(85,5 и 65,25) значит мы умножаем их тангенсы и получаем 1*tg 45, а мы знаем что tg 45 равен 1, значит и ответ 1
3) синусы и косинусы углов, вместе образующих 90 градусов равны, значит тут мы видим 1-sin18^2
По тригонометрическим тождествам знаем, что синус квадрат плюс косинус квадрат равно один, значит здесь мы видим cos18^2
4) По тригонометрическим тождествам знаем, что тангенс=Sin/cos=> cos^2+ sin^2*cos^2/Cos^2= cos^2+sin^2
По тригонометрическим тождествам знаем, что синус квадрат плюс косинус квадрат равно один, значит это утверждение равно одному
5) вынесем синус за скобки
Тогда sin*(1-cos^2)
По тригонометрическим тождествам знаем, что синус квадрат плюс косинус квадрат равно один, значит получаем sin*sin^2= sin ^3
решение смотри на фотографии
Объяснение: