В №1 при подстановке значения у из первого уравнения во второе получим х(а-3)=2. Следовательно (а-3) не=0. а не=3. При а=3 нет решений. Единственное решение при любых а, кроме а не=3. №2. Преобразуем каждое уравнение, т.е. избавимся от знаменателей. В первом уравнении правую часть умножим на 10, а во втором левую часть умножим на 3, а в правой первое и второе слагаемые соответственно умножим на 4 и 3 Тогда получим после перенесения всех неизвестных в левую часть, а чисел в правую { 2x+90y=276 4x+9e=39 Поделим обе части первого уравнения на 2, а обе части второго умножим на 5. Получим { x+45y=138 20x+45y=195 Вычтем из второго уравнения первое и получаем 19х=57 х=19 далее находим у.
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
Единственное решение при любых а, кроме а не=3.
№2. Преобразуем каждое уравнение, т.е. избавимся от знаменателей. В первом уравнении правую часть умножим на 10, а во втором левую часть умножим на 3, а в правой первое и второе слагаемые соответственно умножим на 4 и 3
Тогда получим после перенесения всех неизвестных в левую часть, а чисел в правую
{ 2x+90y=276
4x+9e=39 Поделим обе части первого уравнения на 2, а обе части второго умножим на 5. Получим
{ x+45y=138
20x+45y=195 Вычтем из второго уравнения первое и получаем
19х=57
х=19 далее находим у.