Дана функция
Производная её равна: y' = (3x^2*x^2 - 2x*(x^3 + 4))/x^4 = (x^3 - 8)/x^3.
Приравняем её нулю ( при х не равном 0 можно только числитель).
x^3 - 8 = 0.
x^3 = 8, х = ∛8 = 2. Это критическая точка.
С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x = -1 0 1 2 3
y' = 9 - -7 0 0,7037.
• Минимум функции в точке: х = 2, у = 3.
• Максимума функции нет.
• Возрастает на промежутках: (-∞; 0) U (2; ∞).
• Убывает на промежутке: (0; 2).
x^3+bx^2+сx+d=0
c целыми коэффициентами рациональными корнями могут быть только числа являющиеся делителями свободного члена d
Проверяем для первого уравнения свободный член -6 - его делители +-1 +-2 +-3 +-6
подставляем эти x в уравнение
1 2 3 - являются корнями
x^3-6x^2+11x-6=(x-1)(x-2)(x-3)=0
Первый ответ:
x=1 x=2 x=3
Для второго уравнения свободный член -12 - его делители +-1 +-2 +-3 +-4 +-6 +-12
подставляем эти x в уравнение
-4 -3 1 - являются корнями
x^3+6x^2+5x-12=(x+4)(x+3)(x-1)=0
Второй ответ
x= -4 x= -3 x=1