1) задуманное число х
квадрат задуманного числа х²
От квадрата задуманного натурального числа х отняли 63
значит х²-63 и получили удвоенное задуманное число т.е. 2х
составим уравнение
x²-63=2x
x²-2x-63=0
по т.Виетта
х₁+х₂=2 и х₁*х₂= -63
тогда х₁= -7 и х₂=9
Проверим: (-7)²-63=49-63= - 14 = 2*(-7)
9²-63=81-63=18=2*9
2) Четное число- характеристика целого числа, определяющая его делиться нацело на два. Запишем четное число 2х
тогда следующее четное число 2х+2
по условию (2х+2)² больше чем 2х в 9 раз
составим уравнение
(2х+2)²=9*2х
4x²+8x+4=18x
4x²-10x+4=0 |:2
2x²-5x+2=0
D=25-16=9
x₁=(5+3)/4=2
x₂=(5-3)/4=1/2 - не целое число, а значит не является четным
тогда 2x= 2*2=4 это первое число
2х+2=4+2=6 это второе число
Проверим: 6²=36=9*4
ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.
у=8х-8
у=0
0=8х-8
8х=8
х=1
х=0
у=8•0-8
у=-8
ответ (1;0);(0;-8)