М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
VeronikaKit
VeronikaKit
09.03.2021 10:58 •  Алгебра

Решите систему неравенств : 3^х+3^х-3 меньше 26; (0'4)^4-х^2больше или равно 1

👇
Открыть все ответы
Ответ:
Heh6
Heh6
09.03.2021

Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения \sin(t) = \alpha.

Если нарисовать числовую окружность, то значение \sin(t) = \alpha есть координата точки t по оси oy, ведь для любой точки числовой окружности справедливо, что t(x; \: y), \: x = \cos(t), \: y = \sin(t), т.е. точка t \in \mathbb R имеет координаты (\cos(t); \: \sin(t)).  

Если провести прямую, параллельную оси ox через точку \sin(t), то она пересечётся с числовой окружностью в каких-то точках.  

Чтобы было понятнее, советую нарисовать окружность радиусом R = 1 и центром в точке O(0;0) и отмечать всё, о чём я пишу.  

Теперь рассмотрим эти точки пересечения.

Если 0, то пересечения будут в первой и второй четвертях.

Если -1, то пересечения будут в третьей и четвёртой четвертях.

Если \sin(t) = 0, то пересечений тоже два и это 0 и \pi.

Если \sin(t) = 1, то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она \frac{\pi}{2}.

Если же \sin(t) = -1, то пересечение тоже одно, тоже является точкой касания, но значение равно -\frac{\pi}{2}.

А теперь вспомним определение арксинуса. Арксинусом числа \alpha называют такой угол t \in \lbrack 0; \: \frac{\pi}{2}\rbrack, что \sin(t) = \alpha. Главное здесь то, что t может быть углом только первой четверти.  

Отсюда же следует, что t=\arcsin(\alpha),\: t \in \lbrack 0; \: \frac{\pi}{2}\rbrack.

Это прекрасно работает для \sin(t) = 1, ведь \arcsin(1) = \frac{\pi}{2}.

Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. \sin(t) - это число, а \arcsin(\alpha) - угол.  

Пусть прямая y= \alpha пересекается с окружностью в точках A в первой четверти и B во второй четверти, а точку \alpha на оси oy мы обзовём C. Рассмотрим треугольники AOC и BOC, в них:

OC - отрезок, лежащий на оси oy, а AB - хорда, параллельная оси ox, значит OC \perp AB, по аксиоме о перпендикулярности прямых. Следовательно, треугольники AOC и BOC - прямоугольные по определению.OC - отрезок, лежащий на радиусе и OC \perp AB, значит AO = OB по свойству радиуса.OC - общая сторона.

Треугольники AOC и BOC равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол COA и угол BOC.

Но углы мы отсчитываем от точки (0; \: 1), обзовём её K. Тогда угол AOK = \frac{\pi}{2} - COA. А это угол t первой четверти.  

BOK = 2COA + t\\2COA + 2t =\pi\\BOK + t = \pi\\BOK = \pi - t = \pi - arcsin(\alpha)

А угол BOK - искомый угол второй четверти.

Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть \gamma - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный \gamma + 2\pi. Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами (\cos(t);\: \sin(t)) надо добавить 2\pi n, где n - целое (чтобы получились полные обороты).

Вот так и получается первая формула.

Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности n. Если n - чётное, то формула трансформируется в \arcsin(\alpha) + 2\pi \times p, \: 2p = n, \: p \in \mathbb{Z}, если нечётное, то в -\arcsin(\alpha) + \pi \times (2p+1), \: (2p+1) = n, \: p \in \mathbb{Z}, ну а -\arcsin(\alpha) + \pi \times (2p+1) = \pi - \arcsin(\alpha) + 2\pi \times p. Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.

Как-то так. Фу-у-у-ух. Много. Очень Много Букв.

P.S. Прости за задержку.

4,6(58 оценок)
Ответ:
sernikovs
sernikovs
09.03.2021
Петя :
Время на 1 лестничный  пролет   t₁ сек.
Первая часть задачи:
Кол-во лестн. пролетов    4-1 = 3  
(т.е.   1) с 4  на 3 эт. ; 2) с 3 на  2 эт.  ; 3) со 2 эт. на 1 эт.)    
Время на  этот путь    3t₁  сек.
Вторая часть задачи :
Кол-во лестн. пролетов  5 -1= 4
Время на этот  путь        4t₁ сек.

Мама на лифте:
Количество этажей (лестн. пролетов)  4 - 1= 3 
Время на  1 этаж     t₂  сек.
Время на  весь путь   3t₂  сек.

Первое уравнение : 3t₂ - 3t₁= 2 
т.к. мама едет дольше, чем Петя ,  на 2 секунды.
Второе уравнение:  4t₁ - 3t₂ = 2
т.к. Петя бежит  дольше , чем едет мама, на 2 секунды.

Система уравнений:
{3t₂-3t₁=2          ⇒ t₂=( 2+3t₁)/3
{4t₁-3t₂=2
Метод сложения:
3t₂-3t₁+4t₁-3t₂= 2+2
t₁=4  (сек.) на 1 лестничный пролет  у Пети
3*4 = 12 (сек.)  на  путь Пети с  4 этажа на 1-й.
Проверим: 
t₂= (2+3*4)/3 = 14/3 = 4  2/3  (сек.) на 1 этаж  у мамы на лифте
3*4  2/3   - 3 * 4 =  14  - 12 =  2 (сек.) быстрее Петя в 1-м случае
4*4   - 3*  4  2/3 = 16 - 14 = 2 (сек.) быстрее мама во 2-м случае

ответ: за 12 секунд Петя сбегает с четвертого  этажа на первый.
4,6(22 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ