В решении.
Объяснение:
1) При каких значениях переменной принимает неотрицательное значение выражение -x²-2x+120?
Неотрицательное - значит, больше либо равно 0.
-x²-2x+120 >=0
Приравнять к нулю и решить как квадратное уравнение:
-x²-2x+120 =0/-1
х²+2х-120=0
D=b²-4ac =4+480=484 √D= 22
х₁=(-b-√D)/2a
х₂=(-b+√D)/2a
х₁=(-2-22)/2
х₁= -24/2
х₁= -12;
х₂=(-2+22)/2
х₂=20/2
х₂=10.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -12 и х=10, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>=0 (как в неравенстве), при х от -12 до х=10, часть параболы выше оси Ох, то есть, решения неравенства находятся в интервале
х∈ [-12, 10]. ответ задания.
Неравенство нестрогое, значения х= -12 и х= 10 входят в решения неравенства, поэтому скобки квадратные.
Всё решается очень просто. Применяется теорема Виета для первого уравнения (это есть в любом учебнике математики)
х(квадрат)+5х-7=0
х1*х2=-7
х1+х2=-5
Если надо составить уравнение с корнями 1/х1 и 1/х2, то надо сделать несколько преобразований:
Если х1*х2=-7, то применяя теорему Виета уже для второго уравнения, получаем, что (1/х1)*(1/х2)=-1/7
Тоже самое если сложить два корня:
(1/х1)+(1/х2)=(х1+х2)/(х1*х2)=-5/(-7)=5/7
Значит уравнение вот такое a^2-(5/7)a-(1/7)=0
Можно последнее уравнение умножить на 7, чтобы были целые коэффиценты.
Вот и всё решение.