Найти значение выражения -a^2 + 3 при a= -5 1) 13; 2) 7; 3) -22; 4) 28. указать наименьшее целое число, удовлетворяющее неравенству x ≥ - 4,7 1) -4 2) -5 3) 0 4) 1 известно, что b - a = 15. сравнить числа a и b 1) a > b 2) a < b 3) a = b
Под методом математической индукции понимают следующий доказательства. Если требуется доказать истинность предложения А(n) для всех натуральных n, то, во-первых, следует проверить истинность высказывания А(1) и, во-вторых, предположив истинность высказывания А(k), попытаться доказать, что высказывание А(k+1) истинно. Если это удается доказать, причем доказательство остается справедливым для каждого натурального значения k, то в соответствии с принципом математической индукции предложение А(n) признается истинным для всех значений n.
Док-во от противного: Если корень из двух (далее к2) рационален, значит к2 = m/n, где m и n натуральные числа причем дробь m/n несократимая. (по определению рационального числа)
возведем обе частив квадрат получаем 2 = m*m/n*n, домножаем обе части на n*n получаем 2*n*n = m*m делаем вывод, что m - четное число, а значит m = 2*m1. получаем 2*n*n = (2*m1)*(2*m1), далее 2*n*n = 4*m1*m1, значит n*n = 2*m1*m1 из этого следует что n тоже четное число.
Получиили что и n и m четные числа, значит дробь можно сократить (поделить числитель и знаменатель на 2, но это противоречит условию что дробь несократима. ПРОТИВОРЕЧИЕ. значит к2 иррационален.