Пусть b1,b2,b3 члены геометрической прогрессии и a1,a4,a25 соответственно арифметической, из условия следует что b1+b2+b3=114. Из свойств арифм прогрессии, приравнивая соответствующие члены перепишем их как b1=a1, b2=a1+3d, b3=a1+24d суммируя получаем b1+b2+b3=3a1+27d=114 откуда a1+9d=38, выразим отсюда a1=38-9d так как b2/b1=b3/b2 или что тоже самое (a1+3d)/a1=(a1+24d)/(a1+3d) подставляя в уравнение, выражение a1=38-9d получаем (38-6d)/(38-9d)=(38+15d)/(38-6d) или (38-6d)(38-6d)=(38+15d)(38-9d) 18*38*d=171d^2 откуда d=0,d=4 при d=0 ответ b1=b2=b3=38 , при d=4, a1=2 получаем b1=a1=2, b2=a4=14, b3=a25=98.
А)364-100% x-18% x=364×18÷100=65,52 Обазначим первую часть бруска через x, тогда вторая часть будет выглядеть так: x+65,52 Уравнение будет иметь вид: x+x+65,52=364 2x=364-65,52 2x=298,48 x=149,24-Длина первой части 149,24+65,52=214,76-Длина второй части б) Пусть сторона квадрата будет равна 10см. Тогда Периметр будет равен 40см, а Площадь 100см^2. Если Периметр увеличить на 10%: 40-100% x-110% x=44см-Периметр после увеличение на 10% Тогда сторона будет равна 11см. И соответственно Площадь будет равна 121см^2, то есть Площадь увеличится на 21%