Объяснение:
№1. Определить, проходит ли график функции y = x² – 6 через следующие точки:
A (1; -5); B (-3; -3); C (-3; 3); D (10; 94); E (5; -19); F (-5; 19).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
A (1; -5) B (-3; -3)
y=x²–6 y=x²–6
-5=1²-6 -3=(-3)²-6
-5= -5, проходит. -3≠3, не проходит.
C (-3; 3) D (10; 94)
3=(-3)²-6 94=10²-6
3=3, проходит. 94=94, проходит.
E (5; -19) F (-5; 19)
-19=5²-6 19=(-5)²-6
-19≠19, не проходит. 19=19, проходит.
№2. Построить график функции:
y = -4x + 1.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 5 1 -3
№3. Построить график функции:
y = x² – 5.
График парабола, ветви направлены вверх.
Координаты вершины (0; -5)
Таблица:
х -4 -3 -2 0 2 3 4
у 11 4 -1 -5 -1 4 11
№4. Построить график функции:
y =10/х.
График гипербола.
Таблица:
х -10 -5 -4 -2 -1 0 1 2 4 5 10
у -1 -2 -2,5 -5 -10 - 10 5 2,5 2 1
№5. Построить график функции:
y = Ix + 1 I +3.
График функции с модулем, имеет вид "галочки".
Координаты вершины данного графика (-1; 3)
Таблица:
х -6 -4 -2 -1 0 2 4
у 8 6 4 3 4 6 8
а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)