Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
S(x)=Vx*t
x(t)=xo+Vx*t - это равномерное движение со скоростью Vx (проекция).
Она не меняется. Среднюю скорость вычисляют, если тело на разных участках пути двигалось с разной скоростью.
x(t)=3+6*t
3 м - начальная координата хо, 6 м/с - скорость равномерного движения Vx.
Vcp=Vx=6 м/с на любом участке пути. Какой бы интервал времени вы не взяли, скорость будет 6 м/с
S(t) - пройденный путь. От начальной координаты не зависит.
ответ: 6 м/с.
S(2)=6*2+3=15
S(5)=6*5+3=33
Vcp=(S(5)-S(2))/(t2-t1)=(33-15)/(5-2)=18/3=6 м/с.
Объяснение: