Условие задания:
Дано: f(x)={x2+4x+3,еслиx∈[−5;0]x+1−−−−√+2,еслиx∈(0;3]
Построй график данной функции. При него найди интервалы возрастания и убывания, экстремумы (т. е. максимумы и минимумы) функции, наибольшее и наименьшее значения функции, интервалы знакопостоянства функции, чётность, нули функции и точки пересечения с осями x и y.
1. Интервал возрастания функции:
x∈(−2;3)
x∈(−1;3)
x∈[−2;3]
Интервал убывания функции:
x∈[−5;−2)
x∈(−5;−2)
x∈[−5;−2]
x∈(−5;−3)
2. Экстремум функции
(в соответствующее окно вводи целое число — положительное или отрицательное):
f() = .
Это
максимум функции
минимум функции
3. Наибольшее и наименьшее значения функции (в соответствующее окно вводи целое число — положительное или отрицательное):
a) наибольшее значение функции f() = ;
б) наименьшее значение функции f() = .
4. Интервалы знакопостоянства функции:
a) функция положительна, если
x∈[−5;−3]∪[−1;3]
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.