Пусть прямые 3x-5y=10 и 2x+ky=9 пересекаются в точке (х₀, у₀),
3x-5y = 10 2x + ky=9
5y = 3x-10 ky = -2x + 9
y = 3/5*x - 2 y = -2/k*x + 9/k / заметим, что k≠0
У первой ф-ции свободный член равен -2, значит прямая пересекается с осью ОУ в точке (0, -2), значит для того чтобы вторая прямая проходила через эту же точку надо, чтобы её координаты удовлетворяли ур-нию второй функции, т.е.
-2 = -2/k*0 + 9/k
-2 = 9/k
k = - 4,5
Если же точка перечения (х₀, у₀) лежит на координатной оси ОХ, значит ордината у₀ = 0, тогда для первой функции
0 = 3/5*x₀ - 2
3/5*x₀ = 2
x₀ =10/3
Подставим x₀ и у₀ во второе уравнение:
0 = -2/k*10/3 + 9/k
2/k*10/3 = 9/k
20/3k = 9/k
20k = 27k | :k (k≠0)
20 = 27 (невнрно => точка пересечения не может лежать на оси ОХ)
ответ: пересекаются в точке принадлежащей оси ОУ при k = - 4,5
ответ
1) 63/65; 2) -√2/10; 3) √((9+√80)/18); 4) -2√2
1) Косинус разности
cos(a - b) = cos a*cos b + sin a*sin b.
У нас a = arcsin(3/5); sin a = 3/5;
cos a = √(1 - sin^2 a) = √(1 - 9/25) = √(16/25) = 4/5
b = arcsin(5/13); sin b = 5/13;
cos b = √(1 - sin^2 a) = √(1 - 25/169) = √(144/169) = 12/13
sin a = 3/5; sin b = 5/13
Получаем
cos(a - b) = 4/5*12/13 + 3/5*5/13 = 48/65 + 15/65 = 63/65
2) Синус суммы
sin(a + b) = sin a*cos b + cos a*sin b
У нас a = arcctg(1/2); tg a = 1/2;
sin a = √5/5; cos a = 2√5/5.
Проверяем: sin^2 a + cos^2 a = 5/25 + 4*5/25 = 1/5 + 4/5 = 1. Все верно.
Точно также b = arcctg(-1/3); tg b = -1/3;
sin b = √10/10; cos b = -3√10/10
sin^2 b + cos^2 b = 10/100 + 9*10/100 = 1/10 + 9/10 = 1. Все верно.
Получаем
sin(a + b) = √5/5*(-3√10)/10 + 2√5/5*√10/10 = -3√50/50 + 2√50/50 = -√50/50 = -√2/10
3) Косинус половинного угла
cos (a/2) = √((1 + cos a)/2)
У нас a = arcsin(1/9); sin a = 1/9;
cos a = √(1 - sin^2 a) = √(1 - 1/81) = √(80/81) = √80/9
cos (a/2) = √((1 + √80/9)/2) = √((9 + √80)/18)
4) tg a = sin a / cos a
У нас a = arccos(-1/3); cos a = -1/3;
sin a = √(1 - cos^2 a) = √(1 - 1/9) = √(8/9) = √8/3
tg a = (√8/3) / (-1/3) = -√8/3 * 3 = -√8 = -2√2
я не знаю сорри
Объяснение: