План действий такой: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) полученные корни ставим на числовой прямой и определяем знак производной на каждом участке 4) делаем выводы: а) где плюс, там возрастание, где минус - убывание, точка, при переходе через которую производная меняет знак с + на -, это точка максимума, наоборот - точка минимума. Начали? 1) производная равна(-2х(х +2) - ( 3 - х²)·1)/(х + 2)² 2) ( -2х² - 4х - 3 + х² )/(х + 2)² = 0 | ·(х + 2 ) ≈ 0 -2х² - 4х -3 +х² = 0 -х² -4х -3 = 0 х² + 4х + 3 = 0 х1 = -1; х2 = -3 3) -∞ + -3 - -1 + +∞ 4) функция возрастает при х∈( -∞; -3)∨(-1; +∞) функция убывает при х ∈(-3; -1) х = -3 точка мак4симума х = -1 точка минимума.
=(a-x)(x-y)(x²+xy+y²)-(x-y)(a-x)(a²+ax+x²)=
=(a-x)(x-y)(x²+xy+y²-a²-ax-x²)=
=(a-x)(x-y)(y²-a²+xy-ax)
2x³-2xy²-6x²+6y²=
=(2x³-2xy²)-(6x²-6y²)=
=2x(x²-y²)-6(x²-y²)=
=(x²-y²)(2x-6)=
=2(x-3)(x-y)(x+y)
5a²-5b²-10a³b+10ab³=
=(5a²-5b²)-(10a³b-10ab³)=
=5(a²-b²)-10ab(a²-b²)=
=(a²-b²)(5-10ab)=
=5(1-5ab)(a-b)(a+b)
36x³-144x-36x²+144=
=(36x³-36x²)-(144x-144)=
=36x²(x-1)-144(x-1)=
=(x-1)(36x²-144)=
=(x-1)(6x-12)(6x+12)=
=(x-1)*6(x-2)*6(x+2)=
=36(x-1)(x-2)(x+2)
y³+ay²-b²y-b²a=
=(y³+ay²)-(b²y+b²a)=
=y²(y+a)-b²(y+a)=
=(y+a)(y²-b²)=
=(y+a)(y-b)(y+b)