Тема: "система линейных уравнений" Теплоход за 3 ч против течения и 2 ч по течению км. Какова скорость течения, если скорость против течения на 5 км/ч меньше скорости по течению? Заранее
Проследим изменение последней цифры при возведении числа 3 в степень: 3⁰ 1 3¹ 3 3² 9 3³ 27 3⁴ 81 3⁵ 243 3⁶ 729 3⁷ 2187 3⁸ 6461 Мы видим ЦИКЛИЧЕСКОЕ повторение последней цифры каждые 4 степени, т.е. 1 будет последней цифрой 4; 8; 12; 16 и т.д. степени. (100 - 0) : 4 = 25 БЕЗ ОСТАТКА. Значит, 1 будет последней цифрой и числа 3¹⁰⁰ после 25 циклов. (Можно также посчитать сколько циклов пройдет от числа 3⁴ до 3¹⁰⁰. 100 - 4 = 96; 96 : 4 = 24 (полных цикла). Т.е последняя 3¹⁰⁰ будет такой же, как и у 3⁴, т.е.1) ответ: 3¹⁰⁰ оканчивается на 1.
И так для начало поясню. Это формулы сокращенного умножения. Их нужно выучить. И так: а) (2а+3)(2а-3)= Это квадрат разности вот как он выглядит: (а+б)(а-б)=а^2-б^2 Cледовательно, нужно возвести 2а в квадрат и 3 возвести в квадрат, вот как это будет выглядеть:(2а+3)(2а-3)=4а^2-9 б) делается также возводишь y в квадрат и 5b тоже в квадрат в)аналогично с а) и б) г)Это квадрат суммы. выглядит так, (a+b)^2=(a^2+2ab+b^2) нужно возвести а в квадрат потом произведение а и б умножить на два и потом прибавить квадрат б. Как будет выглядеть: (b+0,5)^2=(b^2+b+0,25) д) Это наоборот квадрат разности,выглядит так, (a-b)^2=(a^2-2ab+b^2), следовательно, (а-2х)^2= (a^2-4ax+4x^2) е) Аналогично
3⁰ 1
3¹ 3
3² 9
3³ 27
3⁴ 81
3⁵ 243
3⁶ 729
3⁷ 2187
3⁸ 6461
Мы видим ЦИКЛИЧЕСКОЕ повторение последней цифры каждые 4 степени, т.е. 1 будет последней цифрой 4; 8; 12; 16 и т.д. степени.
(100 - 0) : 4 = 25 БЕЗ ОСТАТКА. Значит, 1 будет последней цифрой и числа 3¹⁰⁰ после 25 циклов.
(Можно также посчитать сколько циклов пройдет от числа 3⁴ до 3¹⁰⁰.
100 - 4 = 96; 96 : 4 = 24 (полных цикла). Т.е последняя 3¹⁰⁰ будет такой же, как и у 3⁴, т.е.1)
ответ: 3¹⁰⁰ оканчивается на 1.