М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
аиуоушв
аиуоушв
17.04.2023 09:08 •  Алгебра

Сложи почленно неравенства 16<22 и - 0,8 > - 3,1​

👇
Открыть все ответы
Ответ:
Egorjava
Egorjava
17.04.2023

Объяснение:

В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:

Утверждение $P(n)$ справедливо при $n=1$.

Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.

Доказательство с метода математической индукции проводится в два этапа:

База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)

Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.

Метод математической индукции применяется в разных типах задач:

Доказательство делимости и кратности

Доказательство равенств и тождеств

Задачи с последовательностями

Доказательство неравенств

Нахождение суммы и произведения

4,8(50 оценок)
Ответ:
hjhffff
hjhffff
17.04.2023
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: D= b^2-4ac (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена

3x^2-x-2=0\\&#10;D=1^2-4\cdot3\cdot(-2)=1+24=25; \ D\ \textgreater \ 0

Дискриминант больше нуля - два корня

16x^2+8x+1=0\\&#10;D=8^2-4\cdot 16\cdot1=64-64=0

Дискриминант равен нулю. В уравнении 1 корень

x^2+6x+10=0\\&#10;D=36-40=-4; D\ \textless \ 0

Дискриминант меньше нуля, значит нет действительных корней

2) y= \frac{ \sqrt{x+3} }{x^2+x}

Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать.
В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.

x^2+x \neq 0\\&#10;x(x+1) \neq 0\\&#10;x_1 \neq 0\\\\&#10;x+1 \neq 0\\&#10;x_2 \neq -1

В нашем случае функция не имеет смысла, при х=-1 и х=0
4,5(76 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ