1) 7 - 3x - 3 = 2x
4 = 5x
x = 4\5
2) 12x + 3 = 8x - 3x - 4
12x - 8x + 3x = - 4 - 3
7x = - 7
x = - 1
3) 10 - x( 5 - 6 - x) = x^2 + 3x - 4x
10 - 5x + 6x +x^2 = x^2 - x
10 + x +x^2 = x^2 - x
10 = - x - x^2 + x^2 - x
10 = - 2x
x = - 5
4)
5x - 2x + 6 = 6x
3x - 6x = - 6
- 3x = - 6
x = 2
5) 6x - 2x - 5 = 6x - 12
4x - 6x = - 12 + 5
- 2x = - 7
x = 7/2 = 3.5
6) x(x^2 - x) + 6 = (x^2 + 3x)(x - 4)
x^3 - x^2 + 6 = x^3 - 4x^2 + 3x^2 - 12x
x^3 - x^2 - x^3 + x^2 + 12x = - 6
12x = - 6
x = - 0,5
7) 6 - 4x - 4 = 3x
- 4x - 3x = - 6 + 4
- 7x = - 2
x = 2\7
8) 3x - 6 = 7 + 2x - 5
3x - 2x = 6 + 7 - 5
x = 8
Объяснение:
1. На фото 1
а) 1/3 є розв'язком, 7 - не є роза'язком
б) 7 є розв'язком, 1/3 не є розв'язком
2. На фото 2
a) x∈(-2; +∞)
b) x(-∞; 6]
3. а) - 2
б) 9
4.
а) -4x≤ 16
x≥ 16/(-4)
x ≥ -4
x∈[-4; +∞)
б) 7-4x>6x-23
-4x-6x > -23-7
-10x > -30
x < -30/(-10)
x< 3
x∈(-∞; 3)
в) р-ня не має розв'язку, бо на нуль ділити не можна
г) 8x+(x-3)(x+3) ≥ (x+4)²
8x + x² - 9 ≥ x² + 8x +16
x² - x² + 8x - 8x ≥ 16 +9
0 ≥ 25
Р-ня не має коренів
e) домножимо обидві частини р-ня на 20:
5(5x-2) - 4(3-x) > 2(1-x)
25x - 10 -12 + 4x > 2- 2x
29x +2x > 2+12+10
31x > 24
x > 24/31
x ∈( 24/31; +∞)