Пусть d - знаменатель арифметической прогрессии и q - знаменатель геометрической прогрессии. С одной стороны, a4=a1+3*d. С другой стороны, по условию a4=a1*q. Аналогично a5=a1+4*d и a5=a4*q=a1*q². Получили систему уравнений:
a1+3*d=a1*q a1+4*d=a1*q²
Разделив эти уравнения на a1, получим систему:
1+3*d/a1=q 1+4*d/a1=q²
Отсюда 1+4*d/a1=(1+3*d/a1)². Обозначая d/a1=x, приходим к квадратному уравнению:
1+4*x=(1+3*x)²=1+6*x+9*x², или 9*x²+2*x=x*(9*x+2)=0, откуда x=d/a1=0 либо x=d/a1=-2/9. Но при x=0 d=0, тогда q=1. В этом случае и арифметическая, и геометрическая прогрессии состоят из одних и тех же чисел. Если d/a1=-2/9, то из первого уравнения системы следует q=1/3. а из второго - q²=1/9. ответ: q=1 либо q=1/3.
выделяют две категории воды в горных породах - свободную и связанную. Свободная вода - это та, с которой все мы обычно привыкли иметь дело. Именно эта вода добывается и эксплуатируется человеком для различных нужд. В отличие от нее связанная вода находится и удерживается в наиболее мелких порах и трещинах горных пород и испытывает со стороны поверхности твердой фазы минералов "связывающее" влияние разной природы и интенсивности, изменяющее ее структуру и придающее ей аномальные свойства, то есть не такие, как у обычной, свободной воды. Связанную воду не так просто извлечь из породы, в которой она находится. Под действием поверхностных сил разной природы она относительно прочно удерживается на поверхности минералов, не подчиняется силам гравитации и ее передвижение в породах может происходить лишь под влиянием сил иной природы.
a1+3*d=a1*q
a1+4*d=a1*q²
Разделив эти уравнения на a1, получим систему:
1+3*d/a1=q
1+4*d/a1=q²
Отсюда 1+4*d/a1=(1+3*d/a1)². Обозначая d/a1=x, приходим к квадратному уравнению:
1+4*x=(1+3*x)²=1+6*x+9*x², или 9*x²+2*x=x*(9*x+2)=0, откуда x=d/a1=0 либо x=d/a1=-2/9. Но при x=0 d=0, тогда q=1. В этом случае и арифметическая, и геометрическая прогрессии состоят из одних и тех же чисел. Если d/a1=-2/9, то из первого уравнения системы следует q=1/3. а из второго - q²=1/9.
ответ: q=1 либо q=1/3.