как решить графически систему уравнения 3x+y=3 2x-y=7
рисуешь графики 3x+y=3
2x-y=7, это прямые, 1) 3x+y=3 - прямая проходит через точки с координатами А(0,3) x=0 y=3 и В(1,0) x=1 y=0 , отмечаем эти точки и рисуем прямую.
2) 2x-y=7- прямая проходит через точки с координатами С(0,3) x=0 y=-7 и D(1,0) x=1 y= -5 , отмечаем эти точки и рисуем прямую. Смотрим и видим точка пересечения К(2,-3)
Дана функция y=f(x) где f(x) = { -x +1, если -4 < x < -1 -x² + 3, если -1 < x < 2 а) f(-4)= -(-4) +1=5 f(-1)= -(-1) +1=2 f(0)= -(0)^2 +3=3
б) график функции в дополнении
в) функция определена на ограниченном интервале функция на данном интервале непрерывна, функция на данном интервале не является ни четной, ни нечетной функция на данном интервале не является монотонной, так как производная меняет знак производная имеет разрыв функция на данном интервале имеет 2 локальных максимума и 2 локальных минимума
рисуешь графики 3x+y=3
2x-y=7, это прямые,
1) 3x+y=3 - прямая проходит через точки с координатами А(0,3) x=0 y=3 и В(1,0) x=1 y=0 ,
отмечаем эти точки и рисуем прямую.
2) 2x-y=7- прямая проходит через точки с координатами С(0,3) x=0 y=-7 и D(1,0) x=1 y= -5 ,
отмечаем эти точки и рисуем прямую.
Смотрим и видим точка пересечения К(2,-3)
ПРОВЕРКА...
(2,-3)
3x+y=3 6-3=3 ВЕРНО
2x-y=7 4+3=7 ВЕРНО