Рассмотренный решения системы уравнений называется алгебраического сложения. Для исключения одного из неизвестных нужно выполнить сложение или вычитание левых и правых частей уравнения системы.
Задача 2. Решить систему уравнений
5х+3у=29,Из рассмотренных примеров видно, что алгебраического сложения оказывается удобным для решения системы в том случае, когда в обоих уравнениях коэффициенты при каком-нибудь неизвестном одинаковы или отличаются только знаком. Если это не так, то нужно постараться уравнять модули коэффициентов( коэффициенты без учета знака) при каком-нибудь одном из неизвестных, умножая левую и правую части каждого уравнения на подходящее число.
Задача 3. Решить систему уравнений
3х+2у=10, Итак, для решения системы уравнений алгебраического сложения нужно:
1) уравнять модули коэффициентов при одном из неизвестных;
2) складывая или вычитая почленно полученные уравнения , найти одно неизвестное;
3) подставляя найденное значение в одно из уравнений исходной системы, найдем второе неизвестное.
Задача 4. Решить систему уравнений
4х-3у=14,
ОДЗ: 21 + 4x - x² > 0
21 + 4x - x² ≠ 1
7 - x > 0
x + 3 > 0
x + 3 ≠ 1
21 + 4x - x² > 0
x² - 4x - 21 < 0
x² - 4x - 21 = 0
По теореме Виета: x₁ = -3, x₂ = 7.
x² - 4x - 21 < 0
x ∈ (-3; 7)
21 + 4x - x² ≠ 1
x² - 4x - 20 ≠ 0
D = 16 + 80 = 96
7 - x > 0
x < 7
x + 3 > 0
x > -3
x + 3 ≠ 1
x ≠ -2
Окончательно, ОДЗ: x ∈ (-3;
Решаем само неравенство:
Замена:
t ≠ 1
t ≠ -1
Делаем обратную замену:
Учитывая ОДЗ, окончательный ответ: x ∈ (-3;