(-3;-17) - точка экстремума функции (минимум)
Объяснение:
Точки экстремума - это такие точки, в которых значение функция, скажем так, меняет свою скорость роста. То есть до неё функция либо возрастала, либо убывала, а после неё наоборот - начинает либо убывать, либо возрастать.
Для нахождения точки экстремума потребуется найти производную 1 порядка:
После этого мы приравниваем получившуюся функцию к нулю и решаем получившееся уравнение:
2x+6=0 => 2x=-6 => x=-3
но необходимо убедиться, что данная точка действительно является экстремумом, для этого мы смотрим как ведёт себя функция y' до и после точки x0=-3 (можно подставить любые значения <-3 а потом значение >-3, если получаются разные по знаку числа, к примеру отрицательное-положительное или положительное-отрицательное, то данная точка действительно является экстремумом функции y, а точнее в данном случае она является минимумом).
Ну а теперь осталось подставить значение x0=-3 в изначальную функцию y и найти y0
Ну и запишем ответ:
(-3;-17) - точка экстремума функции (а точнее - минимум)
Необходимые условия экстремума:
Имеем две критические (стационарные) точки: и
Достаточные условия экстремума: если при переходе через критическую точку производная непрерывной функции меняет знак на противоположный, то имеем экстремум функции в этой точке.
Если точка с абсциссой меняет знак с "+" на "–" (двигаясь в направлении увеличения ), то — точка максимума, а если с "–" на "+" , то — точка минимума.
Из промежутка выберем, например, и имеем:
Из промежутка выберем, например, и имеем:
Имеем максимум в точке с абсциссой
Из промежутка выберем, например, и имеем:
Имеем минимум в точке с абсциссой
ответ:
ответ: 3,875.
Объяснение:
Формула члена геометрической прогрессии: bn = b1 * q^(n – 1),
где b1 – первый член геометрической прогрессии, q – её знаменатель, n – количество членов прогрессии.
Согласно этой формуле, выразим пятый член заданной геометрической прогрессии:
b5 = b1 * q^(5 – 1) = b1 * q^4 = 2 * (0,5)^4 = 0,125;
Сумма первых n членов геометрической прогрессии находится по формуле:
Sn = bn * q – b1 / (q – 1);
Т.о., подставив известные значения, получим:
S5 = b5 * q – b1 / (q – 1) = 0,125 * 0,5 – 2 / (0,5 – 1) = -1,9375 / (-0,5) = 3,875.
ответ: S5 = 3,875.