Три числа х1, х2 и х3 образуют растущую арифметическую прогрессию. 1) Найдите х2, если сумма этой прогрессии = 9. 2) Если к х1 добавить 1, х2 оставить без изменений, а в х3 добавить 3, то получим геометрическую прогрессию. Найдите х1 и х3.
Х - скорость первого автомобиля. L - расстояние между пунктами. (Х+22) - скорость 2 автом. на втором участке. Тогда с учетом условия: L/Х - время движения 1 автомобиля 0,5L/33+0,5L/(Х+22) - время движения 2 астом. По условию они равны. L/Х =0,5L/33+0,5L/(Х+22) 1/Х=1/66+1/(2Х+44). Умножаем обе части на 66*Х*(Х+22) и избавляемся от знаменателя. Имеем: 66*(Х+22)=Х*(Х+22)+33*Х. Раскрываем скобки и переносим все в правую часть. Х^2+22Х+33Х-66Х-1452=0 (Х^2 - это Х в квадрате) Х^2-11Х-1452=0. Решаем квадратное уравнение Х1= 11/2+кор. квадр из [(11/2)^2+1452]=44 (км/час.) Х2=11/2-кор. квадр из [(11/2)^2+1452]<0 - не имеет смысла ответ: Х=44 км/час.
работы на компетентностной основе: по осознанному чтению, грамотности, естественнонаучной грамотности и решению проблем. для проведения контрольных работ приобретены сборники контрольно-измерительных материалов, разработанные специально для учащихся школ города специалистами и партнерами ано «центр развития молодежи» (г. екатеринбург). для учащихся направлены на проверку: способности результативно использовать языковые средства для решения коммуникативных, информационных, в том числе учебных (осознанное чтение); способности осуществлять действия, вести рассуждения и использовать средства для решения практических, исследовательских и познавательных проблем ( грамотность); способности делать основные наблюдения на экспериментах и выводы о свойствах окружающего мира и изменениях, которые могут вносить в окружающий мир действия человека, а также применять полученные знания для объяснения природных явлений и решения практических (естественнонаучная грамотность); способности использовать познавательные умения для разрешения межпредметных реальных проблем, в которых способ решения с первого взгляда явно не определяется. умения, необходимые для решения проблемы, формируются в разных учебных областях, а не только в рамках одной из них — , естественнонаучной или чтения (решение
L - расстояние между пунктами.
(Х+22) - скорость 2 автом. на втором участке.
Тогда с учетом условия:
L/Х - время движения 1 автомобиля
0,5L/33+0,5L/(Х+22) - время движения 2 астом.
По условию они равны.
L/Х =0,5L/33+0,5L/(Х+22)
1/Х=1/66+1/(2Х+44). Умножаем обе части на 66*Х*(Х+22) и избавляемся от знаменателя. Имеем:
66*(Х+22)=Х*(Х+22)+33*Х.
Раскрываем скобки и переносим все в правую часть.
Х^2+22Х+33Х-66Х-1452=0 (Х^2 - это Х в квадрате)
Х^2-11Х-1452=0. Решаем квадратное уравнение
Х1= 11/2+кор. квадр из [(11/2)^2+1452]=44 (км/час.)
Х2=11/2-кор. квадр из [(11/2)^2+1452]<0 - не имеет смысла
ответ: Х=44 км/час.