М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Злая4Пташка4
Злая4Пташка4
14.02.2023 21:20 •  Алгебра

Решите задачу. В двух коробках было 150 ручек. Когда из второй коробки убрали 20 ручек, а в первой количество ручек удвоили, то в обоих коробках стало 200 ручек. Сколько ручек было в первой коробке первоначально?

👇
Ответ:
magomedov254
magomedov254
14.02.2023

Пусть х ручек в 1 коробке,а у ручек во 2

Тогда х+у=150 и (у-20)+2х=200

Составим систему уравнений

{х+у=150

{(у-20)+2х=200

{х+у-150=0 |•(-1)

{у-20+2х-200=0

{-х-у+150=0

{2х+у-220=0

Выполним сложение

Получим:

х-70=0

х=70

ответ:70 ручек

4,6(62 оценок)
Открыть все ответы
Ответ:
Aizere1111
Aizere1111
14.02.2023

Пусть \varepsilon - канонический базис в \mathbb{R}^{3}.

Тогда матрицу перехода T_{e \rightarrow e'} можно найти следующим образом:

T_{e \rightarrow e'} = T_{e \rightarrow \varepsilon} \cdot T_{\varepsilon \rightarrow e'} = T_{\varepsilon \rightarrow e}^{-1} \cdot T_{\varepsilon \rightarrow e'}

Если записать блочную матрицу \left(\begin{array}{c|c}T_{\varepsilon \rightarrow e}&T_{\varepsilon \rightarrow e'}\end{array}\right) и привести путем элементарных преобразований к виду \left(\begin{array}{c|c}E&X\end{array}\right), то X = T_{\varepsilon \rightarrow e}^{-1} \cdot T_{\varepsilon \rightarrow e'}

Матрицу T_{\varepsilon \rightarrow e} легко получить: достаточно записать в столбцы координаты векторов базиса e. Аналогично с матрицей T_{\varepsilon \rightarrow e'}.

В итоге необходимо получить вид \left(\begin{array}{c|c}E&X\end{array}\right) следующей матрицы:

\left(\begin{array}{ccc|ccc}2&-1&1&5&7&1\\2&2&-1&5&8&1\\3&-3&2&-1&9&2\end{array}\right)

Вычтем первую строку из второй и третьей:

\left(\begin{array}{ccc|ccc}2&-1&1&5&7&1\\0&3&-2&0&1&0\\1&-2&1&-6&2&1\end{array}\right)

Вычтем из первой строки 2 третьих и поменяем их местами:

\left(\begin{array}{ccc|ccc}1&-2&1&-6&2&1\\0&3&-2&0&1&0\\0&3&-1&17&3&-1\end{array}\right)

Вычтем из третьей строки вторую:

\left(\begin{array}{ccc|ccc}1&-2&1&-6&2&1\\0&3&-2&0&1&0\\0&0&1&17&2&-1\end{array}\right)

Прибавим ко второй строке 2 третьих и вычтем из первой третью:

\left(\begin{array}{ccc|ccc}1&-2&0&-23&0&2\\0&3&0&34&5&-2\\0&0&1&17&2&-1\end{array}\right)

Делим вторую строку на 3:

\left(\begin{array}{ccc|ccc}1&-2&0&-23&0&2\\0&1&0&\frac{34}{3} &\frac{5}{3}&{-\frac{2}{3}}\\0&0&1&17&2&-1\end{array}\right)

Прибавляем в первой строке 2 вторых:

\left(\begin{array}{ccc|ccc}1&0&0&{-\frac{1}{3}}&\frac{10}{3}&\frac{2}{3}\\0&1&0&\frac{34}{3} &\frac{5}{3}&{-\frac{2}{3}}\\0&0&1&17&2&-1\end{array}\right)

\frac{1}{3}\left(\begin{array}{ccc}-1&10&2\\34&5&-2\\51&6&-3\end{array}\right).

4,8(27 оценок)
Ответ:
при любом значении b решите уравнение : 
(x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0

(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ;
ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4.
---
x²+(3b+2)x+2b² +3b+1=0 ;
D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0  всегда  имеет  решения :
x₁  = (-3 b- 2 - b)/2 = -1 - 2b , если  -1 - 2b ≠ 1  и -1 - 2b ≠ 4 ,
т.е. если b ≠ -1 и b ≠ -2,5.
x₂  = (- 3b - 2 +b)/2 = -1 - b , опять если  -1 - b ≠ 1 b и -1 - b ≠ 4 , .
т.е.  если b ≠ -2 и b ≠ - 5.

 * * * * P.S.
Можно было  в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить  x =1 и x = 4 в качестве корней;
 
1)  1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ 
b² +3b+2 =0 ⇒[ b = -2 ; b = -1 .
2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .

b ≠ -5 ; -2,5 ;  -2 ; - 1.
4,4(64 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ