М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

До ть будь ласка виконати множення (номер 4)


До ть будь ласка виконати множення (номер 4)

👇
Ответ:
StrangeLis
StrangeLis
13.06.2021

(√19-√13)(√19+√13)= √19^2-√3^2=19-13=6

4,4(54 оценок)
Открыть все ответы
Ответ:
ЛеКи
ЛеКи
13.06.2021

1)Решение системы уравнений (-1; 10);

2)Решение системы уравнений (4; -1)

Объяснение:

Решите систему уравнений методом сложения:

1)y-6x=16

4y+6x=34

Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.

В данной системе ничего преобразовывать не нужно, коэффициенты при х одного значения и с противоположными знаками:

Складываем уравнения:  

у+4у-6х+6х=16+34

5у=50

у=10

Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:

y-6x=16

-6х=16-у

-6х=16-10

-6х=6

х=6/-6

х= -1

Решение системы уравнений (-1; 10)

2)3x-4y=16

  5x+6y=14

В данной системе, чтобы применить метод сложения, нужно первое уравнение умножить на 3, второе на 2:

9х-12у=48

10х+12у=28

Складываем уравнения:

9х+10х-12у+12у=48+28

19х=76

х=76/19

х=4

Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:

3x-4y=16

-4у=16-3*4

-4у=16-12

-4у=4

у=4/-4

у= -1

Решение системы уравнений (4; -1)

4,7(37 оценок)
Ответ:
NomaMe927
NomaMe927
13.06.2021

а).

Приведем пример:

2 + 7 + 72 = 81.

ответ: да.

б).

Заметим, что при такой сумме будут использованы только двузначные и однозначные числа (так как наименьшее возможное в задаче трехзначное число, 222, уже больше 197). То есть, имеем всего лишь шесть возможных чисел: 2, 7, 22, 27, 72, 77.

Предположим, что 197 можно представить в виде суммы нескольких различных натуральных чисел, состоящих только из 2 и 7. Так как 197 - число нечетное, то и в искомой сумме будет нечетное количество нечетных чисел - или же нечетное количество чисел, заканчивающихся на 7 (то есть, 1 или 3 числа).

Итак, рассмотрим два случая. Пусть в сумме есть только одно нечетное число. Тогда максимальное значение такой суммы равняется (2 + 22 + 72) + 77 = 173, что, естественно, меньше 197. Такой расклад событий нам не подходит.

Второй случай подразумевает, что были использованы все три нечетных числа. Если мы к тому же взяли в сумму и все четные числа, то она стала равна (7 + 27 + 77) + (2 + 22 + 72) = 207. Это больше, чем нам нужно, ровно на 10. Но проблема в том, что мы должны вычесть из суммы 10, используя только 2, 22, 72. Но 2 < 10 < 22, и уменьшить сумму таким тоже не получится. Значит, и этот вариант не имеет места быть.

И искомое предположение было неверным.

ответ: нет.

в).

В полном условии задачи пункта в указано число 2099 (так как число 209 получить искомым нельзя).

Докажем, что меньше, чем за семь слагаемых, получить 2099 невозможно.

Здесь, опять же, в силу нечетности числа 2099, в сумме будут присутствовать нечетное количество чисел, заканчивающихся на 7.

Если такое число одно, то сумма последних цифр (чтобы на конце было 9 и всего слагаемых было не более 7) может быть такова:

7 + 2   ⇒  __9    (2 числа)

7 + 2 ⋅ 6   ⇒  __9    (7 чисел)

Если у нас три семерки, то случай (в пределах семи слагаемых) только один:

7 ⋅ 3 + 2 ⋅ 4   ⇒  __9    (7 чисел)

Тоже самое касается пяти и семи семерок:

7 ⋅ 5 + 2 ⋅ 2   ⇒  __9    (7 чисел)

7 ⋅ 7   ⇒  __9    (7 чисел)

Если чисел, заканчивающихся на 7, больше чем 7, то и всего слагаемых больше семи, что нас пока не устраивает.

Таким образом, единственный случай с меньше, чем с семью слагаемыми, - это 2 + 7.

Но если у нас есть всего лишь два слагаемых, то максимальная сумма равна 772 + 777 = 1549 < 2099 (четырехзначные числа не используются, так как 2222 > 2099). Получаем, что меньше семи слагаемых использовать невозможно (есть только один кандидат из двух слагаемых, правда, нам не подходящий).

Докажем, что семь слагаемых будет достаточно - приведем пример:

2 + 22 + 222 + 722 + 77 + 277 + 777 = 2099

ответ: 7 чисел.

4,8(68 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ