Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
Для того, чтобы система не имела решений, графики её уравнений должны быть параллельны. Это значит, что коэффициенты при х и при у должны быть соответственно равны, а свободные члены не должны быть равны. Имеем:1) х+ау=1; коэф. при х равен 1, коэф. при у равен а, свободн. равен 12) х-3ау=2а+3; коэф.при х равен 1, коэф. при у равен -3а, своб. равен 2а+3Коэффициенты при х: 1=1Коэффициенты при у: а=-3а, а+3а=0, 4а=0, а=0Свободные члены: 1, 2*0+3=3 - не равны между собой.Все условия выполнены.
ответ: двухместных лодок в походе - 4,
трехместных лодок в походе - 5.
Объяснение:
Пусть двухместных лодок в походе - х,
а трехместных лодок в походе - у. ⇒
{x+y=9 |×2 {2*x+2*y=18
{2*x+3*y=23 {2*x+3*y=23
Вычитаем из второго уравнения первое:
y=5. ⇒
x+5=9
x=4.