Сомневаюсь, что в 5-9 классе изучают производную функции |x|, поэтому решим аналитически: Найдём точку смены знака модуля: 2x + 4 = 0, x = -2 Получается, что на отрезке [-3;-2] функция убывает, а на отрезке [-2;3] функция возрастает. Причем возрастает симметрично относительно прямой x = -2, поэтому в точке x = 3 будет наибольшее значение функции. f(3) = 9. Наибольшее значение функции = 9. Так как минимальное значение функции y = |2x+4| - это 0, то отнимая от функции 1, получаем, что минимальное значение = -1.
Примем: Х км/час скорость по шоссе; 32/Х время по шоссе; (Х+20) скорость по автостраде; 60/(Х+20) время по автостраде. Так как общее время = 1 час, составим и решим уравнение: 32/Х + 60/(Х+20) = 1; приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения: 32Х + 640 + 60Х = Х² + 20Х; Х²-72Х - 640 = 0; Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим; Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час); Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла) Х+20 = 80+20 = 100 (км/час); ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час; Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1
Найдём точку смены знака модуля: 2x + 4 = 0, x = -2
Получается, что на отрезке [-3;-2] функция убывает, а на отрезке [-2;3] функция возрастает. Причем возрастает симметрично относительно прямой x = -2, поэтому в точке x = 3 будет наибольшее значение функции.
f(3) = 9.
Наибольшее значение функции = 9.
Так как минимальное значение функции y = |2x+4| - это 0, то отнимая от функции 1, получаем, что минимальное значение = -1.
9 - (-1) = 10
ответ: 10