В результате выделения полных квадратов получаем:
-4(x - 2)² + 25(y + 2)² = 100
Разделим все выражение на 100 :
(-1/25)(x - 2)² + (1/4)(y + 2)² = 1.
Параметры кривой.
Данное уравнение определяет гиперболу с центром в точке:
C(2; -2) и полуосями:
a = 5 (мнимая полуось); b = 2 (действительная полуось) .
Вершины:(2; 0) и (2; -4).
Найдем координаты ее фокусов: F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами
Определим параметр c: c² = a² + b² = 25 + 4 = 29
Тогда эксцентриситет будет равен: e = c/a = √29/5.
Асимптотами гиперболы будут прямые: y + 2 = +-(2/5))x - 2)
Директрисами гиперболы будут прямые: (x - 2) = +-(25/√29).
Запишем уравнение кривой в виде -4*(x²-4*x)+25*(y²+4*y)-16=0, или -4*[(x-2)²-4]+25*[(y+2)²-4]-16=0, или -4*(x-2)²+25*(y+2)²=100, или -(x-2)²/25+(y+2)²/4=1. Это есть уравнение гиперболы с центром симметрии в точке (2;-2), вещественной полуосью a=√25=5 и мнимой полуосью b=√4=2. Вершины гиперболы в данном случае лежат на прямой x=2, параллельной оси ординат. Одни из вершин имеет координаты (2;3), другая - координаты (2;-7). Асимптоты гиперболы задаются уравнениями y-y0=b/a*(x-x0) и y-y0=-b/a*(x-x0), где x0 и y0 - координаты центра симметрии. В нашем случае x0=2, y0=-2, a=5,b=2, поэтому уравнения асимптот принимают вид: y+2=2/5*(x-2) и y+2=-2/5*(x-2).
17.
ОДЗ: х≠±3
х+21-х(х-3)=0
х+21-х²+3х=0
х²-4х-21=0
х1=7
х2=-3 - не удовлетворяет по ОДЗ
18.
1-х≥0
х≤1
х+2≠0
х≠-2
ответ: х є (-∞; -2) v (-2; 1].
19.
P1=x+2
P2=x
A1=192
A2=224
t=A/P
192/(x+2)+4=224/x
x=14
x=-8 - не удовлетворяет
ответ: 14 часов; 18 часов.
20.
x²+4x+m-3=0
D=16-4(m-3)=16-4m-12=4-4m=0
m=1
ответ: 1.
Если нужны объяснения по этой теме – обращайтесь :) Отметьте как лучший ответ, если не сложно ❤️