М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LizaDemidova3101
LizaDemidova3101
12.08.2021 11:45 •  Алгебра

ЗАДАНИЕ с заданием ЗАДАНИЕ с заданием.​ ">

👇
Открыть все ответы
Ответ:
sokolovan061
sokolovan061
12.08.2021

Объяснение:

Для начала найдем область определения функции, и ее потенциальные точки разрыва

1)D(f)=R, точек разрыва нет

2) проверим функцию на четность, очевидно функция четная, т.к. при подстановке вместо икс минус икс функция вида не изменит.

3) найдем нули функции и знак функции на полученных интервалах, для этого разложим функцию на составляющие x^4-1=(x^2-1)(x^2+1)=(x-1)(x+1)(x^2+1)

Приравняем это к нулю, тогда x=1 x=-1

Исследуем знак функции на промежутках от минус бесконечности до минус 1, от минус 1 до 1, и от 1 до +бесконечности. Для этого подставим любую точку из промежутков и получим знаки +-+ (значит на промежутке от -беск до -1 и от 1 до+беск, функция выше оси Ох, на промежутке -1 до 1 функция ниже оси Ох)

приравняв к нулю икс, получим игрик равный -1

4)найдем ассимптоты, так как точек разрыва нет, то и вертикальных ассимптот нет, найдем наклонную асимптоту, для этого вычислим предел

\lim_{x \to \infty} (x^4-1)/x стремится к бесконечности, а значит ассимптот нет

5)Исследуем точки экстремума и интервалы монотонности, тогда найдем производную

4x³  и приравняем ее к нулю 4x³=0, откуда x=0. Найдем знаки слева и справа от нуля, слева минус справа плюс, значит слева от нуля функция убывает, а справа возрастает. Т.к. 0 принадлежит области определения функция, то подставим его в изначальное уравнение, получим -1. Точка (0,-1) - точка экстремума, т.к. в этой точке производная меняет знак с минуса на плюс, то это точка минимума

6) найдем точки перегиба. Для этого найдем вторую производную - производную от производной = 12x^2. приравняем к нулю и вновь получим 0, найдем знаки слева и справа, с обеих сторон +, значит функция выпукла вниз на всей области определения, и точка 0 не является точкой перегиба

7) нужно построить график по всем значениям которые мы получили


F(x)=x^4-1 исследуйте функцию ​
4,5(22 оценок)
Ответ:
elena1alekseevna
elena1alekseevna
12.08.2021

Например, система уравнений может быть задана следующим образом.

x + 5y = 7

3x − 2y = 4

Чтобы решить систему уравнений, нужно найти и «x», и «y».

Разберем подстановки на примере.

x + 5y = 7

3x − 2y = 4

Выразим из первого уравнения «x + 5y = 7» неизвестное «x».

Перенесём в первом уравнении «x + 5 y = 7» всё что содержит «x» в левую часть, а остальное в правую часть по правилу переносу.

При «x» стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.

x = 7 − 5y

3x − 2y = 4

Теперь, вместо «x» подставим во второе уравнение полученное выражение

«x = 7 − 5y» из первого уравнения.

x = 7 − 5y

3(7 − 5y) − 2y = 4

Подставив вместо «x» выражение «(7 − 5y)» во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным «y». Решим его по правилам решения линейных уравнений.

Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение «3(7 − 5y) − 2y = 4» отдельно. Вынесем его решение отдельно с обозначения звездочка (*).

x = 7 − 5y

3(7 − 5y) − 2y = 4 (*)

(*) 3(7 − 5y) − 2y = 4

21 − 15y − 2y = 4

− 17y = 4 − 21

− 17y = − 17 | :(−17)

y = 1

Мы нашли, что «y = 1». Вернемся к первому уравнению «x = 7 − 5y» и вместо «y» подставим в него полученное числовое значение. Таким образом можно найти «x». Запишем в ответ оба полученных значения.

x = 7 − 5y

y = 1

x = 7 − 5 · 1

y = 1

x = 2

y = 1

ответ: x = 2; y = 1

сложения

Рассмотрим другой решения системы уравнений. Метод называется сложения. Вернемся к нашей системе уравнений еще раз.

x + 5y = 7

3x − 2y = 4

По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.

Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.

4,5(91 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ