Возведем обе части уравнения в квадрат, но с условием, что правая часть уравнения тоже неотрицательна, как и левая: ОДЗ: {x+2>=0 x>=-2 {x-28>=0 x>=28 Т.О., x e [28; + беск.)
x+2=(x-28)^2 x+2=x^2-56x+784 x+2-x^2+56x-784=0 -x^2+57x-782=0 x^2-57x+782=0 D=(-57)^2-4*1*782=121 x1=(57-11)/2=23 - посторонний корень, не входящий в ОДЗ x2=(57+11)/2=34 ответ: x=34
Можно графически решить это уравнение: построить график функции y=V(x+2) и график функции y=x-28. Абсцисса точки пересечения двух графиков и будет корнем уравнения.
а) (x²-1)(x² - 5x + 4) < 0 Разложим квадратные трехчлены на множители (х-1)(х+1)(х-1)(х-4) < 0 (x-1)²(x+1)(x-4) < 0 Находим нули функции х-1=0 х+1=0 х-4=0 х=1 х=-1 х=4 Отмечаем точки на числовой прямой пустым кружком ( мы - круглыми скобками) и расставляем знаки + - _ + (-1)(1)(4) ответ. (-1; 1)U(1;4)
б) (x² - 5x + 6)(x² - 3x +2) <0 Разложим квадратные трехчлены на множители (х-2)(х-3)(х-1)(х-2) < 0 (x-2)²(x-3)(x-1) < 0 Находим нули функции х-2=0 х-3=0 х-1=0 х=2 х=3 х=1 Отмечаем точки на числовой прямой пустым кружком ( мы - круглыми скобками) и расставляем знаки при х = 10 (10-2)²(10-3)(10-1)>0 На (3;+∞) , содержащем х=10 ставим знак +, далее влево -, при прохождении через точку 2 знак не меняется, так как множитель (х-2) входит в неравенство в степени 2. И на последнем интервале слева снова знак + + - - + (1)(2)(3) ответ. (1; 2)U(2;3)
ОДЗ:
{x+2>=0 x>=-2
{x-28>=0 x>=28
Т.О., x e [28; + беск.)
x+2=(x-28)^2
x+2=x^2-56x+784
x+2-x^2+56x-784=0
-x^2+57x-782=0
x^2-57x+782=0
D=(-57)^2-4*1*782=121
x1=(57-11)/2=23 - посторонний корень, не входящий в ОДЗ
x2=(57+11)/2=34
ответ: x=34
Можно графически решить это уравнение: построить график функции
y=V(x+2) и график функции y=x-28. Абсцисса точки пересечения двух графиков и будет корнем уравнения.