Объяснение: формула cos2a = cos^2a-sin^2a
√8(2cos^2 7п/8 -1)= √8 cos 7п/4= √8*√2/2=2
1) 96град = 96*П/180 = 8П/15 если угол был отрицательным, то -8П/15
2) 3П/10 = 3П/10*180/П = 54 град
3) 290 град - угол 4 четверти (sin<0)
70 град - угод 1четверти (cos>0)
100 град - угод 2 четверти (sin>0, cos<0, следовательно tg<0)
т.е "-" * "+" * "-" = "+" выражение >0
4) если cos<0 и сtg = cos/sin >0, значит sin<0
cos<0 и sin<0 в 3 четверти
5) -10П/7 = -10*180/7 = -257.14...
2 четверть
6) 7 + sin a
Наименьшее значение синуса =-1
7-1 = 6
7) кубич корень из (2sin(-1125) = кубич корень из [2sin(-360*3 - 45)] =
= кубич корень из [2sin(- 45)] = кубич корень из [-2*(2)^0.5/2] =
= кубич корень из [-(2)^0.5] = -2^(1/6)
1) 96град = 96*П/180 = 8П/15 если угол был отрицательным, то -8П/15
2) 3П/10 = 3П/10*180/П = 54 град
3) 290 град - угол 4 четверти (sin<0)
70 град - угод 1четверти (cos>0)
100 град - угод 2 четверти (sin>0, cos<0, следовательно tg<0)
т.е "-" * "+" * "-" = "+" выражение >0
4) если cos<0 и сtg = cos/sin >0, значит sin<0
cos<0 и sin<0 в 3 четверти
5) -10П/7 = -10*180/7 = -257.14...
2 четверть
6) 7 + sin a
Наименьшее значение синуса =-1
7-1 = 6
7) кубич корень из (2sin(-1125) = кубич корень из [2sin(-360*3 - 45)] =
= кубич корень из [2sin(- 45)] = кубич корень из [-2*(2)^0.5/2] =
= кубич корень из [-(2)^0.5] = -2^(1/6)
выносим √8 за скобку
косинус двойного угла:
в данном случае x=7π/8, тогда двойной 7π/4
итого: