Объяснение:
а) х²-2x-15=0
(x²-2x+1)-1-15=0
(x-1)²-4²=0
(x-1-4)(x-1+4)=0
(x-5)(x+3)=0
x₁=5;x₂=-3
ответ:{-3;5}
б)x²+4x+3=0
(x²+4x+4)-4+3=0
(x+2)²-1²=0
(x+2-1)(x+2+1)=0
(x+1)(x+3)=0
x₁=-1;x₂=-3
ответ: {-3;-1}
в)2x²-16-18=0
2x²-34=0
2(x²-17)=0
x²=17
x₁=-√17; x₂=√17
ответ : {-√17;√17}
если в условии ошибка (пропущена переменная х)
2x²-16x-18=0
2(x²-8x-9)=0
x²-8x-9=0
(x²-8x+16)-16-9=0
(x-4)²-5²=0
(x-4-5)(x-4+5)=0
(x-9)(x+1)=0
x₁=9; x₂=-1
ответ: {-1;9}
г)3x²+18x+15=0
3(x²+6x+5)=0
x²+6x+5=0
(x²+6x+9)-9+5=0
(x+3)²-2²=0
(x+3-2)(x+3+2)=0
(x+1)(x+5)=0
x₁=-1; x₂=-5
ответ: {-5;-1}
в прямоугольном треугольнике СВН угол В = 45 градусов (по условию), тогда угол ВСН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = СН.
известно, что ВС = 6, пусть АН = ВН = х,
тогда по теореме Пифагора ВС^2 = ВН^2 + СН^2
36 = х^2 + x^2; 36 = 2x^2; x^2 = 18; х = корень из 18;
треугольник АНС - прямоугольный.
угол А = 60 градусов (по условию), тогда угол НСА = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда АН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора АС^2 = АН^2 + НС^2
4х^2 = 18 + х^2; 4х^2 - х^2 = 18; 3х^2 = 18; х^2 = 6; х = корень из 6;
тогда Ас = 2х = 2 корня из 6
ответ: 2 корня из 6