Пусть 1 кг конфет стоит х грн, а 1 кг печенья стоит у грн,
тогда 5 кг конфет стоит 5х грн, а 4 кг печенья стоит 4у грн.
По условию эта покупка стоит 320 грн.
Составляем уравнение: 5х+4у=320
3 кг конфет стоит 3х грн, а 2 кг печенья стоит 2у грн.
По условию 3 кг конфет дороже 2кг печенья на 60 грн.
Составляем уравнение:3х-2у=60
Решаем систему:
{5х+4у=320
{3х-2у=60 |*2
{5x+4y=320
{6x-4y=120
Применяем метод сложения, получаем:
11x=440
x=440:11
x=40(грн)-стоит 1 кг конфет
5*40+4у=320
200+4у=320
4у=320-200
4у=120
у=120:4
у=30(грн)-стоит 1 кг печенья
1. Будем равнять условие по объему бассейна, который постоянен для всех вариантов труб . Для удобства обозначим его Р
Р = (V1 + V2)*6, где V1 и V2 соответственно скорости наполнения 1 и 2 трубы
Р = (V1 + V2)*3 + V2*9, ситуация, когда 1 трубу отключили после 3 часов работы.
Из первого уравнения выделяем V1 и подставляем во второе уравнение
V1 = P/6-V2
P = (P/6-V2 +V2)*3 + 9*V2
P = P/2 + 9*V2
9V2 = P/2
P = 18 V2, стало быть вторая труба заполняет объем Р бассейна за 18 часов.
V1 = P/6 - V2
V1 - P/6 - P/18 = (3P-P) / 18 = P/9, значит первая труба заполняет бассейн за 9 часов
ответ - первая труба за 9 часов, а вторая за 18 часов.